

Bidder Selection Problem in Position Auctions: A Fast and Simple Algorithm via Poisson Approximation

Nick Gravin Shanghai University of Finance and Economics

Yixuan (Even) Xu

Tsinghua

University

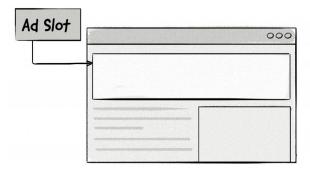
Renfei Zhou Tsinghua University

Bidder Selection in Online Ad Auction

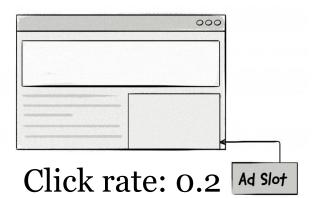
- Online ad auction
 - Ad company sells ad slots to advertisers
 - Real time and automated
- Bidder selection
 - Bidders' valuations are computed from a ML model
 - Running the model for all bidders: costly and slow
 - A prior distribution for each bidder is available
 - Two-stage selection: filter out a fraction of bidders, then run auction

ticket discount Q

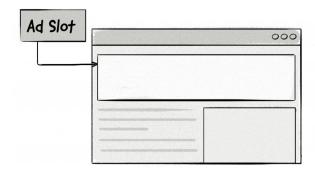
ticket discount Q



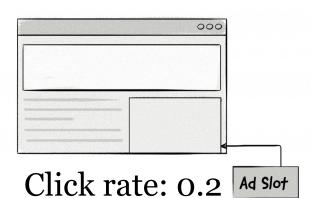
Click rate: 0.8



ticket discount Q



Click rate: 0.8



Value: 5\$

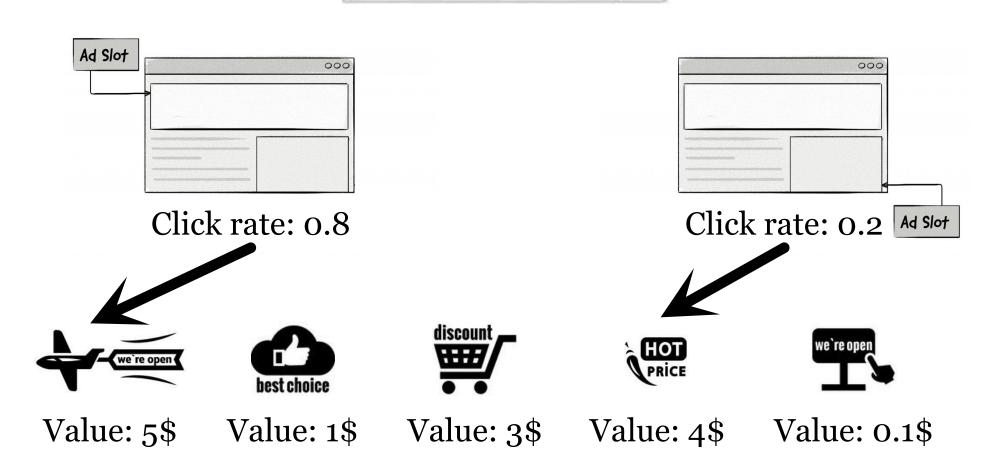
Value: 1\$

Value: 3\$

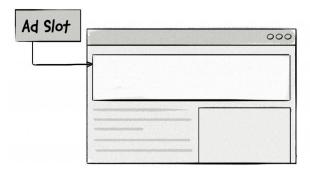
Value: 4\$

Value: 0.1\$

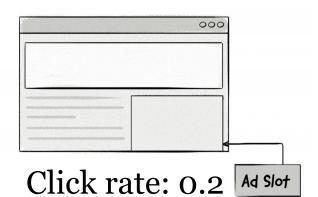
ticket discount Q

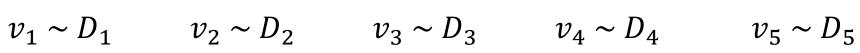


ticket discount



Click rate: 0.8





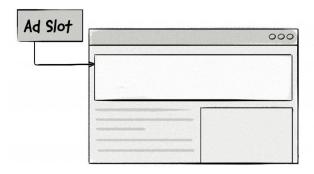
$$v_2 \sim D_2$$

$$v_3 \sim D_3$$

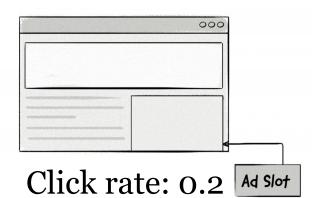
$$v_4 \sim D_4$$

$$v_5 \sim D_5$$

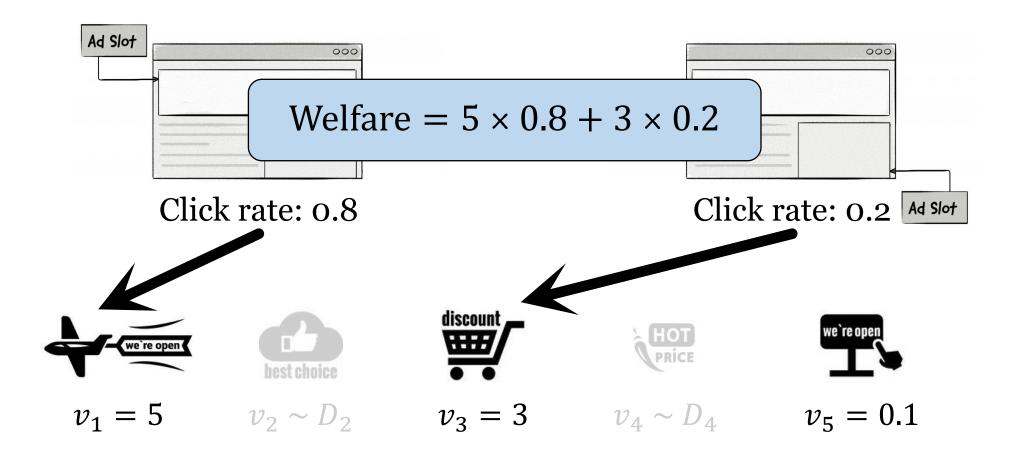
ticket discount



Click rate: 0.8



ticket discount Q



Bidder Selection Problem (Single-Item)

- There are *n* bidders competing for an ad slot
 - Bidder i has value $v_i \sim D_i$ from an independent, known distribution

• We need to **choose** *k* **bidders**, maximizing

 $\mathbb{E}_{v_1,\dots,v_n}[\max\{v_i \mid \text{bidder } i \text{ is chosen}\}]$

• Exact optimum is NP-hard; aim for $(1 - \varepsilon)$ -approximation

Bidder Selection Problem (Position Auction)

- There are *n* bidders competing for some ad slots
 - Bidder i has value $v_i \sim D_i$ from an independent, known distribution
 - There is a non-negative weight sequence $w_1 \ge w_2 \ge \cdots \ge w_k$
- We need to **choose** *k* **bidders**, maximizing

$$\mathbb{E}_{v_1,\dots,v_n}\left[\sum_{i=1}^k v_{(i)}w_i\right]$$

where $v_{(i)}$ is the *i*-th largest value among k chosen bidders

Previous Results on BSP

- Previous (1ε) -approximation (PTAS) algorithms on BSP:
 - [CHLLL2016], [MNPR2020]: For single-item auction
 - [SS2021]: For *L*-unit auctions (i.e., position auctions with $w_i \in \{0, 1\}$)
- All of them are based on discretizing all possible distributions
 - Bad dependency on ε

$$2^{O(1/\varepsilon)^{O(1/\varepsilon)}}$$

- Take years for small instances like n = 3, k = 2, $\varepsilon = 0.2$
- Not implementable in practice

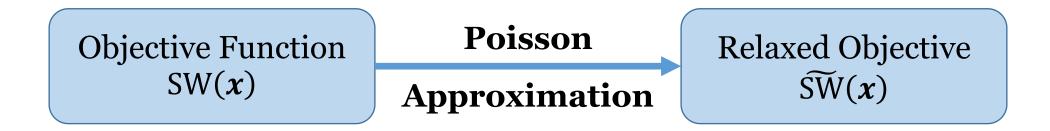
Our Results

• There is a **polynomial-time** algorithm for BSP choosing k bidders out of n with approximation ratio

$$1 - O(k^{-1/4})$$

- This implies a PTAS for BSP for general position auctions
- The algorithm is easily implemented, runs fast and obtains high-quality solutions in experiments

Main Technique: Poisson Approximation



- Relaxed objective $\widetilde{SW}(x)$ has 3 merits:
 - 1. Good approximation ratio: $1 O(k^{-1/4})$
 - 2. Convex, thus easy to optimize
 - 3. Works for general position auctions (not only single-item)

Algorithm Framework

- 1. Poisson approximation gives the **relaxed objective** $\widetilde{SW}(x)$
- 2. Run **convex optimization** to find (a fractional solution) x that maximizes $\widetilde{SW}(x)$

3. Use **rounding** techniques to transform x to an integer solution

Experiments

- We test homebrew implementations of 3 algorithms (using python + standard convex libraries)
- On large instances (n = 1000, k = 200):

	Local Search	Greedy	Our Algorithm
Running Time	> 1 week	1 day	45 sec
(Relative) Welfare	N/A	97.38%	100.00%

• On all test cases, our algorithms shows > 99% approximation compared to the benchmarks (Local Search & Greedy)

Future Directions

- Bidder Selection Problem under different feasibility constraints
 - E.g., matroid, matching, and intersection of matroids
- Revenue maximization for other auction formats

• Improve the approximation ratio $1 - O(k^{-1/4})$