

Economics, Online Markets, and Human Computation

Bidder Selection Problem in Position Auctions: A Fast and Simple Algorithm via Poisson Approximation

Bidder Selection in Online Ad Auction

Research Track

Online ad auction:

Ad company sells ad slots to advertisers; Real-time and automated. **Bidder selection**:

Our Results

There is a **polynomial-time** algorithm for BSP choosing *k* bidders out of *n* with approximation ratio $1 - O(k^{-1/4})$ This implies a PTAS for BSP for general position auctions.

Bidders' valuations are computed from a ML model; Running the model for all bidders is costly and slow; A prior distribution for each bidder is available.

Two-stage selection:

Filter out a fraction of bidders, then run the auction.

Bidder Selection Problem (Single-Item)

There are *n* **bidders** competing for an ad slot. Bidder *i* has value $v_i \sim D_i$ from an independent distribution. We need to **choose** *k* **bidders**, maximizing $\mathbb{E}_{v_1,\ldots,v_n}$ [max { v_i | bidder *i* is chosen}]. Exact optimum is NP-hard; aim for $(1 - \varepsilon)$ -approximate.

Bidder Selection Problem (Position Auction)

There are *n* bidders competing for some ad slots. Bidder *i* has value $v_i \sim D_i$ from an independent distribution. The algorithm is **easily implemented**, runs **fast** and obtains **high-quality solutions** in experiments.

Main Technique: Poisson Approximation

Relaxed objective $\widetilde{SW}(x)$ has 3 merits: **1. Good approximation** ratio: $1 - O(k^{-1/4})$; **2.**Convex, thus easy to optimize; **3.Works** for general **position auctions** (not only single-item).

Algorithm Framework

1. Poisson approximation gives the **relaxed objective** $\widetilde{\mathrm{SW}}(x);$ 2. Run **convex optimization** to find (a fractional solution) x that maximizes $\widetilde{SW}(x)$; 3. Use **rounding** techniques to transform *x* to an integer solution.

There is a non-negative weight sequence $w_1 \ge w_2 \ge \cdots \ge w_k$. We need to **choose** *k* **bidders**, maximizing

$\mathbb{E}_{v_1,\ldots,v_n}\left[\sum_{i=1}^k v_{(i)} w_i\right],$

where $v_{(i)}$ is the *i*-th largest value among k chosen bidders.

Previous Results on BSP

Experiments

We test homebrew implementations of 3 algorithms (using python + standard convex libraries): 1. Greedy for Submodular Welfare Maximization; 2. Local Search (a slow heuristic algorithm usually with good solution quality); 3. Our algorithm. On large instances (n = 1000, k = 200):

	Local Search	Greedy	Our Algo
Running Time	>1 week	1 day	45 sec
Relative Welfare	N/A	97.38%	100.00%

Previous $(1 - \varepsilon)$ -approximation (PTAS) algorithms on BSP: [CHLLL2016]: For **single-item auction**; [MNPR2020]: For **single-item auction**; [SS2021]: For *L*-unit auctions (i.e., position auctions with $w_i \in \{0, 1\}$) All of them base on discretizing all possible distributions. Bad dependency on ε : $2^{O(1/\varepsilon)}$ Take years for small instances like n = 3, k = 2, $\varepsilon = 0.2$. Not implementable in practice.

Relative Welfare

97.38%

100.00%

On all test cases, our algorithms achieves > 99% approx. compared to the benchmarks (Local Search & Greedy).

Future Directions

- 1. Bidder Selection Problem under different feasibility constraints, e.g., matroid, matching, and intersection of matroids;
- 2. Revenue maximization for other auction formats; 3. Improve the approximation ratio $1 - O(k^{-1/4})$.