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Abstract

Frontier models that generate extended reasoning traces inadvertently pro-
duce token sequences that can facilitate model distillation. Recognizing
this vulnerability, model owners may seek sampling strategies that limit
the effectiveness of distillation without compromising model performance.
Antidistillation sampling provides exactly this capability. By strategically
modifying a model’s next-token probability distribution, antidistillation
sampling poisons reasoning traces, rendering them significantly less effec-
tive for distillation while preserving the model’s utility. Our code is avail-
able at https://github.com/locuslab/antidistillation-sampling.

1 Introduction

Large language models (LLMs) trained to produce reasoning traces have achieved strong
performance on math, coding, and reasoning benchmarks [1–3]. These traces, however,
serve a dual purpose. They not only enhance model performance, but also enable distillation,
a process by which a secondary model replicates the original model’s capabilities by training
on its generations [4–6]. Notably, distillation can result in substantial capability gains at a
fraction of the computational cost needed to train similarly performant models from scratch.

While effective and efficient, the viability of distillation poses several downsides for com-
panies deploying frontier reasoning models. First, returning reasoning traces represents a
forfeiture of intellectual property, which can allow competitors to cheaply replicate frontier
capabilities. Second, the threat of distillation incentivizes limiting user access by obscur-
ing token probabilities or truncating reasoning traces. Finally, model safety is often not
preserved by distillation, which enables the generation of harmful content [7, 8].

To address these issues, we introduce antidistillation sampling (see Figure 1). The main idea
underpinning antidistillation sampling is to adjust a model’s sampling distribution so that
generated traces maintain high likelihood under the unadjusted distribution, and distillation
attempts are simultaneously poisoned. To operationalize this idea, we first formulate the
general problem of poisoning reasoning models trained via distillation. We then derive one
solution to this problem (see Algorithm 1), which facilitates a precise trade-off between two
competing objectives—the utility of the original model and the effectiveness of distillation
poisoning—while incurring minimal computational overhead.

To illustrate our empirical results, consider a reasoning model that achieves 72% accuracy
on MMLU. Naively distilling this model using greedy sampling can produce a student that
reaches up to 52% accuracy. If the teacher model increases its sampling temperature, its
accuracy slightly decreases (e.g., by 4%), yet the distilled student’s accuracy remains largely
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Figure 1: Reasoning traces generated via antidistillation sampling poison distillation at-
tempts while simultaneously preserving the teacher’s performance. The teacher’s logits are
perturbed in a direction ∆, leading to samples that significantly degrade distilled model
performance relative to naive temperature sampling. For more details, see Figure 2 and §3.

unchanged at 52%. In contrast, using antidistillation sampling with the same 4% reduction
in teacher accuracy significantly reduces the student’s capabilities, lowering its accuracy
to as low as 40%. Our findings on GSM8K [9], MATH [10], and MMLU [11] indicate that
model owners can effectively limit distillation quality via antidistillation sampling.

2 Related work

Model distillation. The prominence and effectiveness of model distillation—and, more
generally, model compression [12–14]—is rooted in a rich literature dating back to Schmid-
huber [5], and, more recently, to Hinton et al. [4]. Since these seminal works, a growing
body of literature has sought to benchmark the performance of distilled models and to algo-
rithmically maximize the effectiveness of distillation [15–19]. Indeed, a variety of frontier
AI labs have incorporated distillation as a core technique, both to efficiently enable frontier
capabilities [20, 21] and to improve model safety via context distillation [22–24]. However,
this practice constitutes a strategic vulnerability for frontier model maintainers, given the
demonstrated value of these reasoning traces (see, e.g., [1, 25–27]).

Model security. The setting we address in this paper—where a student model is trained on
data generated by a teacher model—intersects with several aspects of model security. For
instance, model extraction attacks acquire weights via query-level access, whereas training
data extraction attacks are designed to harvest training data [28, 29]. While antidistillation
sampling may offer some protection against these attacks, such analysis remains beyond our
scope. More relevant is the literature on data poisoning, where maliciously crafted data is
injected into a model’s training set to induce specific downstream effects (see, e.g., [30]). In
this vein, Rando and Tramèr [31] show the effectiveness of adding backdoors to preference
data, sabotaging LLMs finetuned with RLHF. Our contribution bridges data poisoning and
privacy techniques to protect the valuable knowledge encoded in frontier models.

Distillation prevention. A related line of work has sought to develop algorithms that
prevent distillation. In the context of computer vision, Ma et al. [32] corrupt the teacher’s
logits via self-training, whereas follow-up work shows that returning only the top-k logits
tends to harm distillation [33]. Also related are watermarking algorithms, which seek to
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Algorithm 1: Antidistillation sampling
Input: Prompt x1:n, max tokens N, penalty multiplier λ, approximation parameter ϵ,

temperature τ

1. (Initialization) Compute the gradient of the downstream loss

g← ∇ℓ(θP)

2. For each token index t = n, n + 1, . . . , N − 1:

i. Compute the antidistillation penalty term

∆̂( · |x1:t)←
log p( · |x1:t; θP + ϵg)− log p( · |x1:t; θP)

ϵ

ii. Sample the next token xt+1 from the teacher’s adjusted distribution

xt+1 ∼
1
Z

exp
(

1
τ

log p( · |x1:t; θT) + λ∆̂( · |x1:t)

)
Output: Sampled sequence x1:N

adjust model logits to detect whether a model has been distilled [34–37]. And while this
family of methods preserves teacher accuracy, their static nature—each input generally
yields a deterministic logit vector—presents security vulnerabilities: a distiller can learn
an inverse transformation by saving input-output pairs, and thereby fine-tune to recover
uncorrupted logits. To mitigate this shortcoming, Chen et al. [38] propose a session-dynamic
defense that monitors the sensitivity of a user’s queries and perturbs the logits once a
threshold is crossed. In contrast, antidistillation sampling is fully dynamic; it perturbs
each token’s distribution on-the-fly using gradients from a hidden proxy model, turning
generation into a moving target in a similar fashion to cryptographic stream ciphers.

Language model decoding. Finally, we position antidistillation sampling within the broader
framework of controlled decoding for LLMs [39], where supplementary objectives steer the
decoding process. Existing approaches in this domain include using contrastive objectives
to enhance generation quality [40], reformulating constrained decoding as an optimization
problem [41], and incorporating energy-based constraints [42]. While related, antidistillation
sampling solves a different problem: by implementing a new, distillation-aware penaliza-
tion term in the decoding objective, our approach poisons generated reasoning traces to
undermine the performance of models fine-tuned on these outputs.

3 Antidistillation sampling

To motivate antidistillation sampling, we first sketch a high-level overview of our problem
setting in §3.1. Based on this setting, we provide a desiderata outlining the desired qualities
for poisoning distillation attempts in §3.2. We then derive the antidistillation sampling
method (summarized in Algorithm 1) in §3.3.

3.1 An overview of antidistillation

The core objective of antidistillation sampling is to adjust a model’s next-token distribution
to balance two competing goals: sampling tokens with high likelihood under the original,
unadjusted distribution and sampling tokens that effectively poison distillation attempts.
Throughout, we refer to the model from which reasoning traces are sampled as the teacher,
and the model being distilled as the student.

Our derivation relies on quantifying how model distillation impacts the student model’s
performance on a given downstream task. This analysis yields a key insight—we can
incorporate this performance metric directly into the teacher’s sampling distribution. This
takes the form of a directional derivative capturing the change in the teacher’s sampling
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distribution along the update direction in the student’s weight space. However, due to the
high cost needed to compute this directional derivative, the final portion of our derivation
identifies an efficient finite-difference approximation for this term, which is inexpensive to
compute and, as we demonstrate in §4, results in effective distillation poisoning.

3.2 Preliminaries

We consider an LLM to be a mapping from a sequence of input tokens x1:t = (x1, . . . , xt)
to a distribution over the next token, where each token is an element of a vocabulary set
V = {1, . . . , V}. This distribution is parameterized by weights θ and can be expressed as
p(·|x1:t; θ). We write p(·|x1:t; θ) to denote the distribution of all next-token probabilities,
whereas p(xt+1|x1:t; θ) refers to the scalar probability of a given next token xt+1. Typically,
tokens are generated according to a scaled version of this distribution:2

xt+1 ∼
1
Z

exp (log p(·|x1:t; θ)/τ) . (1)

Here, τ is the temperature and Z is a normalization term, which is computed by summing
the exponential term over all possible next tokens. Using a temperature of τ = 0 corresponds
to greedy sampling, in which xt+1 is deterministically chosen to be the token with the largest
log probability under the current model parameter θ.

Desiderata for antidistillation. Distillation involves a student model—parameterized by
θS, with a distribution over next tokens given by p( · |x1:t; θS)—trained on data generated
from a teacher model parameterized by θT . These models do not need to share the same
parameter space, and therefore the parameter vectors θS and θT need not be comparable;
indeed, a student model may have substantially fewer parameters than the teacher.

The aim of antidistillation sampling is to generate tokens that perform well according to a
metric used to the evaluate teacher, while simultaneously having the property that training
on these tokens cannot improve performance on this same task. In more detail, we aim to
adjust the teacher’s sampling procedure to simultaneously satisfy the following:

I. Non-distillablity. Student models trained on tokens sampled via antidistillation
sampling should have a degraded performance on a chosen downstream task
relative to training on tokens sampled from the teacher’s nominal distribution.

II. Nominal utility. Tokens sampled via antidistillation sampling should remain
probable under the teacher’s unadjusted sampling scheme p( · |x1:t; θT).

Taken together, these goals ensure that the teacher model maintains its nominal performance
while simultaneously preventing distillation on downstream tasks.

Proxy models. In general, we do not expect to know the distilled student’s model archi-
tecture in advance. Therefore, rather than assuming access to the true student model, we
develop antidistillation sampling based on the notion of a proxy student model, which, for
simplicity, we refer to as the proxy model. The proxy model is parameterized by θP, and
specifies a sampling distribution p(·|x1:t; θP). A key aspect we consider below is whether
the process generalizes, i.e., whether traces via antidistillation sampling to prevent the proxy
model from distilling the teacher also prevent the distinct student models from distilling.

3.3 Deriving antidistillation sampling

To operationalize antidistillation sampling, we first assume access to a differentiable, real-
valued downstream loss ℓ, which measures the proxy model’s performance on a given
downstream task. Throughout, we take ℓ to be the negative log-likelihood for generating a
sequence of tokens on a fixed, potentially large dataset. For instance, ℓ could represent the
cross entropy loss of predicting each token across a large reasoning benchmark. However,

2Variants of this sampling scheme include top-k sampling (i.e., limiting sampling to the tokens
with the top-k largest probabilities), greedy sampling (i.e., sampling from the same objective while
letting τ → 0), and beam search, but we focus mainly on temperature-based sampling here.
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Figure 2: An illustration of approximating ∆. The teacher model performs antidistillation
sampling autoregressively, based on its perturbed distribution by ∆. Given an input prompt
and t reasoning tokens from the teacher, ∆ is approximated by the difference of the log
probability of each token in the vocabulary between two copies of the proxy model (created
by performing a single gradient ascent step using the downstream task loss on the proxy
model); this difference is represented by the area in the bar plot.

ℓ can be chosen very broadly to capture any student capability that the teacher model
maintainer may want to influence via poisoning. A key point is that ℓ can be very costly to
compute, as it may require evaluating the proxy model over a large and diverse set of data.

Given the non-distillability criteria outlined above, the goal of antidistillation sampling is
for the downstream loss ℓ(θP) to increase3 whenever the student is fine-tuned on sequences
of tokens generated by the teacher. To capture this, first consider the change in θP that
results from fine-tuning to minimize the negative log-likelihood of a token xt+1 generated
by the teacher. Specifically, we consider one step of optimization via gradient descent on θP:

θ+P = θP − η∇θP (− log p(xt+1|x1:t; θP)) (2)

= θP + η∇θP log p(xt+1|x1:t; θP) (3)

where η > 0 is the step size. The impact of this update can then be quantified by measuring
the difference in the loss ℓ before and after this update. In particular, for each token xt+1 ∈ V ,
we define the following difference term

∆(xt+1|x1:t) = ℓ(θ+P )− ℓ (θP) = ℓ(θP + η∇θP log p(xt+1|x1:t; θP))− ℓ(θP). (4)

If ∆(xt+1|x1:t) is positive, the update in eq. (3) increases the loss; if ∆(xt+1|x1:t) is negative,
the update decreases the loss. Thus, our goal is to adjust the teacher’s sampling distribution
so that tokens sampled from the teacher both have (1) high likelihood under the teacher’s
unadjusted distribution and (2) yield larger (i.e., more positive) values of ∆.

To implement antidistillation sampling, we propose adding a penalty, proportional to
∆(xt+1|x1:t), to the teacher’s unadjusted log probabilities log p(xt+1|x1:t; θT). This results in
the following adjusted sampling distribution

xt+1 ∼
1
Z

exp (log p( · |x1:t; θT)/τ + λ∆( · |x1:t; θP)) , (5)

where Z is a normalization term appropriately scaled (relative to eq. (1)) to accommodate
the penalty, and λ > 0 is a regularization coefficient that facilitates a trade-off between
sampling from the teacher’s distribution and sampling tokens that maximally increase
student’s downstream loss. Unfortunately, directly implementing eq. (5) is impractical, as
we would need to compute ∆(xt+1|x1:t) for each potential next token xt+1 ∈ V , requiring V
gradients to be computed as well as V evaluations of the downstream loss ℓ, which, in turn,
is assumed to involve a lengthy computation to produce.

3We assume without loss of generality that increases in ℓ(θP) are desirable from the perspective of
the poisoner; the procedure is easily adaptable to problems wherein the goal is to decrease ℓ(θP).

5



An efficient implementation. The core of our proposed approach is an efficient mechanism
to approximate the sampling process above. As a starting point, observe that ∆(xt+1|x1:t)
can be scaled by a factor of 1/η without changing the relative penalties for each xt+1 (i.e.,
we could fold this term into the λ regularization penalty). Then, by taking the limit of
∆(xt+1|x1:t)/η as η → 0, we have that

lim
η→0

1
η

∆(xt+1|x1:t) = lim
η→0

ℓ(θP + η∇θP log p(xt+1|x1:t; θP))− ℓ(θP)

η
(6)

=
〈
∇ℓ (θP) ,∇θP log p(xt+1|x1:t; θP)

〉
. (7)

That is, the limit is the inner product between the gradient ∇θP log p(xt+1|x1:t; θP) and the
downstream loss gradient ∇ℓ(θP). Notice that the expression in eq. (7) no longer involves
the evaluation of the downstream loss for each token in V . Rather, ∇ℓ(θP) can be computed
and stored once, after which the only remaining task is to efficiently evaluate eq. (7) for
each token xt+1 ∈ V . To do so, the key observation is that the directional derivative is
symmetrical. Thus, we can rewrite eq. (7) as a finite difference limit in the other term, i.e., in
terms of a finite difference update to log p(xt+1|x1:t; θP). This gives

lim
η→0

1
η

∆(xt+1|x1:t) =
〈
∇ℓ (θP) ,∇θP log p(xt+1|x1:t; θP)

〉
(8)

= lim
ϵ→0

log p(xt+1|x1:t; θP + ϵ∇ℓ(θP))− log p(xt+1|x1:t; θP − ϵ∇ℓ(θP))

2ϵ
(9)

Importantly, this difference involves only the computation of next-token probabilities under
two different models: the original proxy model θP and an updated copy of the proxy
model θP + ϵ∇ℓ(θP). These models can be saved once before any sampling, and then an
approximation of the antidistillation sampling term can be computed for all next tokens
simply via two forward passes in the proxy model. In other words, we define

∆̂( · |x1:t) =
log p( · |x1:t; θP + ϵ∇ℓ(θP))− log p( · |x1:t; θP − ϵ∇ℓ(θP))

2ϵ
(10)

for some appropriately chosen small value of ϵ, where ∆̂(xt+1|x1:t) approaches eq. (7) for
all next tokens xt+1 in the limit as ϵ → 0. Intuitively, ∆̂(xt+1|x1:t) measures how much
sampling token xt+1 would degrade a proxy student’s performance after a single update.
Finally, we sample according to the teacher’s adjusted sampling distribution:

xt+1 ∼
1
Z

exp
(

log p( · |x1:t; θT)/τ + λ∆̂( · |x1:t)
)

. (11)

In Algorithm 1, we summarize the procedure outlined in this section. Concretely, given a
prompt x1:t, using antidistillation sampling to generate a new token xt+1 involves: (1) (once,
at initialization) computing the gradient of the downstream loss; and (2) (for each token
to be generated) compute the finite-difference approximation of ∆(·|x1:t) and sample the
token from the teachers adjusted softmax distribution.

4 Exploring antidistillation in practice

Through a range of experiments, we demonstrate the effectiveness of antidistillation sam-
pling and discuss several interesting phenomena. First, we show that the hyperparameter λ
provides model owners with precise control over the trade-off between nominal utility and
non-distillability. This trade-off persists across various teacher-student model configura-
tions, and notably, remains effective even when the proxy student is from a different model
family than the actual student—validating the practical applicability of our method in real-
istic scenarios where the model owners lack knowledge of potential student architectures.
Additionally, we address methodological questions through a pointed empirical analysis.

4.1 Experimental setup

First, we detail our selection of model architectures and benchmark datasets, chosen to
represent realistic distillation scenarios across varied reasoning tasks. Next, we describe the
computation of ∇ℓ(θP) (eq. (10)). Finally, we outline our baseline comparison methodology.

6



20%30%40%50%60%70%80%90%

Teacher Accuracy

0%

10%

20%

30%

40%

50%

60%

70%

St
ud
en
t 
Ac
cu
ra
cy

Antidistillation's effect on distillability (GSM8K)

Temperature sampling
Antidistillation sampling

1.3 1.5 1.8 2.0 2.3 2.5 2.8 3.1

0.4 1.1 1.8 2.5 3.1 3.8 4.5 5.2

×10 1

Figure 3: Antidistillation sampling uses a tunable parameter λ to control the trade-off
between teacher accuracy and distillability. The baseline involves sampling from the teacher
with increasing temperature τ to show that we can produce traces that are bad for distillation
at some cost in teacher accuracy. One important feature of the blue temperature sampling
curve is that to bring the student accuracy down below the undistilled accuracy, the teacher
performance has to drop to 20%. On the other hand, with antidistillation sampling, the
teacher model can still get 70% accuracy while producing traces that bring the student’s
performance down below the undistilled accuracy.

Architectures. To demonstrate the effectiveness of antidistillation sampling in practice, we
simulate realistic distillation by instantiating distinct teacher, proxy student, and actual
student models. Specifically, we use deepseek-ai/DeepSeek-R1-Distill-Qwen-7B [21] as
the teacher model, Qwen/Qwen2.5-3B[43] as the proxy model, and meta-llama/Llama-3.2-
3B[44] as the student model (we examine other architecture configurations in §4.2).

Benchmarks. We evaluate the performance of antidistillation sampling on GSM8K [9]
(we use GSM8K Platinum for the test set [45]), MATH [10], and MMLU [11] benchmarks
(all provided under the MIT license), which are particularly suitable for our study, as
they require high-quality reasoning traces for strong performance. To evaluate model
performance, we use free-form generation after the prompt to get the reasoning trace,
we then concatenate “\n\n**Final Answer**\n[\boxed{” after the reasoning trace and
continue to generate for 32 additional answer tokens. Finally, we evaluate the model
accuracy on the answer provided within “\boxed{...}”. We also report undistilled student
baselines; since base models have very low accuracy without distillation, we use in-context
learning with reasoning examples showing the correct output format.

Calculating the downstream loss. Calculating ∇ℓ(θP) requires evaluating the proxy model
on a holdout set of reasoning traces. For our experiments, we use the first 70% of our train
data as the training set and the remaining 30% as the holdout set. We use the teacher to
generate reasoning traces on the holdout set, and then calculate ∇ℓ(θP) on these reasoning
traces using gradient accumulation while masking out the system and question prompt.

Baselines. Our primary baseline is temperature sampling, which approximates standard
API endpoint behavior while providing a controlled way to degrade teacher performance.
Importantly, temperature sampling ensures we fairly compare trade-offs against a straight-
forward baseline that—like our method—degrades teacher performance by modifying the
sampling procedure. One other point of comparison to this baseline is that antidistillation
sampling requires two forward passes on the proxy model for each forward pass on the
teacher, independent of λ. Since we choose the proxy model to be approximately half the
size of the teacher, this amounts to doubling the computation needed to sample outputs
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Figure 4: For both MMLU and MATH data, we show that antidistillation sampling can
bring student accuracies down with relatively little cost to the teacher.

from the model compared to temperature sampling. In practice, one might choose a much
smaller proxy model to reduce the overhead further.

Hyperparameters. Antidistillation sampling involves two key hyperparameters: ϵ, which
controls the approximation power of the finite-difference computation, and λ, which deter-
mines the weight of the antidistillation penalty in the sampling distribution from eq. (11).

• For ϵ, we empirically verify that our finite difference approximation in eq. (10)
closely matches the JVP result in eq. (7) (see §B.1). In practice, we find that ϵ = 10−2

works well for BFloat16 models, which is close to the minimum in Figure 7.

• For λ, we conduct a comprehensive sweep to characterize the utility-distillability
trade-off that results from perturbing the sampling distribution.

We use a max generation length of 1024 for both GSM8K and MMLU and 2048 for MATH.
For antidistillation sampling, we use a temperature of τ = 0.6; we found that sweep-
ing between τ ∈ [0, 1] does not significantly impact antidistillation performance. All of
our experiments are performed on nodes with 8 NVIDIA H100 GPUs and we use the
transformers package [46], the trl toolkit [47], and the accelerate library [48].

Distillation protocol. All distillation experiments use LoRA [49] with rank 128, α = 128,
and dropout probability 0. Our optimization protocol employs a learning rate of 0.0005,
weight decay coefficient of 0.1, and gradient clipping at norm 1.0. Training follows a cosine
learning rate schedule with warm-up over the first 10% of training, batch size 32, for 4
epochs. These values are the result of a systematic hyperparameter sweep using the MATH
dataset to find configurations that maximize student performance gain.

4.2 Controlling the utility-distillability trade-off

The bar plots to the right in Figure 1 show that antidistillation sampling effectively satisfies
the desiderata outlined in §3.2. Specifically, for a fixed reduction in teacher performance,
students distilled from sampled traces exhibit substantially lower accuracy compared to
those distilled from temperature-scaled traces. These initial results, while compelling,
represent just one point in the configuration space as they reflect a particular choice of λ.

In Figures 3 and 4, we vary λ to characterize the degree of control antidistillation sampling
provides over the utility-distillability trade-off. Since our experiments use architecturally dis-
tinct student and proxy student models, these results confirm that antidistillation sampling
generalizes effectively across model families—a critical property for practical deployment.

8



0 20 40 60 80 100

Distillation Steps

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

Holdout loss
Train loss

Figure 5: Distillation loss curves show that although the student’s training loss decreases
across steps, antidistillation sampling effectively poisons traces, as shown by the increase in
the student’s holdout loss.

Recognizing that model owners typically have limited tolerance for sacrificing utility, we
explicitly focus on the high-teacher-performance regime in Figure 9. Even in this setting,
where teacher performance degradation is conservative, we observe meaningful degradation
in student accuracy, underscoring the method’s practical efficacy. For example, going from
90% to 89% teacher accuracy leads to the poisoned student dropping from 65% to 56%
accuracy, while temperature sampling doesn’t degrade the student’s performance at all.

4.3 Diverse configurations for antidistillation sampling

To probe the efficacy of antidistillation sampling across diverse scenarios, we conduct
experiments with various teacher-student configurations and datasets. Our primary setup
uses Qwen teacher and proxy student models while using a Llama model for the student.
We also investigate settings where all the models (student, proxy, and teacher) belong to
the same architecture family—either all from the Llama architecture family or all from the
Qwen architecture family—evaluated on GSM8K. Results are provided in Figure 10.

Beyond architectural variations, we also validate our finite difference approximation by
comparing it with the theoretically-motivated Jacobian-vector product (JVP) implementa-
tion (not to be confused with a vector-Jacobian product used in backpropagation). However,
even in modern automatic differentiation frameworks, JVPs tend to lack support for a hand-
ful of important operations, such as SDPA. Meanwhile, JVPs are more accurately computed
in Float32, but flash attention [50] only supports Float16 and BFloat16. In our implemen-
tation, we then abandon the usage of flash attention, which causes the sampling speed to
decrease by around eight times (due to the memory limit, the batch size has to be decreased).
Thus, for the rest of our experiments, we use finite differences for the improved convenience
and efficiency (See §C for more details). As shown in Figure 8, both approaches yield
similar results in practice, confirming that our computationally efficient finite difference
method provides a reliable approximation to the formal gradient-based objective. Further,
with our permutation sampling baseline, we provide evidence that ∆ contains useful gradient
information by applying random noise with the same statistical properties as ∆ (see §A).

4.4 Generalizing from the proxy model

Our method demonstrates strong results across various settings, but an important question
remains about its underlying mechanism. Since we sample tokens explicitly designed to be
detrimental for the proxy model on our holdout set, we are relying on generalization to an
unknown student model. Figure 5 provides insight into this mechanism by tracking loss
dynamics during the distillation process. We observe exactly the intended effect. Distillation
on the antidistillation traces lowers the student’s loss on the training set while increasing its
loss on the holdout set. This result confirms that antidistillation sampling creates traces that
are learnable but poison the student model’s ability to reason on the downstream task.
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5 Conclusion

The value of proprietary frontier LLMs necessitates that their owners do what they can to
protect their assets. As evidenced by the fact that the frontier companies limit exposure
to their models via black-box APIs, these companies are already considering the threat of
model stealing. However, given the recent attention paid to the effectiveness of distillation,
it is imperative that model maintainers who wish to protect the information stored in their
models guard against distillation. This paper provides a proof-of-concept that antidistil-
lation sampling—which adjusts a model’s sampling distribution—is effective in blocking
such attacks. We are excited at the prospect of continuing to refine and scale this approach,
particularly with a view toward more secure future frontier models.

Broader impact. We expect that antidistillation sampling will have a positive impact on
the security of frontier models. By providing a mechanism to protect against distillation, we
hope to encourage the continued development of frontier large language models and their
applications.
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Song, Aleksander Mądry, Bo Li, and Tom Goldstein. Dataset security for machine
learning: Data poisoning, backdoor attacks, and defenses. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(2):1563–1580, 2022.

[31] Javier Rando and Florian Tramèr. Universal jailbreak backdoors from poisoned human
feedback. In International Conference on Learning Representations, 2024.

[32] Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, and Zhangyang
Wang. Undistillable: Making a nasty teacher that cannot teach students. arXiv preprint
arXiv:2105.07381, 2021.

[33] Haoyu Ma, Yifan Huang, Tianlong Chen, Hao Tang, Chenyu You, Zhangyang Wang,
and Xiaohui Xie. Stingy teacher: Sparse logits suffice to fail knowledge distillation.
2022.

12

https://www.nytimes.com/2025/01/29/technology/openai-deepseek-data-harvest.html
https://www.nytimes.com/2025/01/29/technology/openai-deepseek-data-harvest.html
https://arxiv.org/abs/2501.12948


[34] Xuandong Zhao, Yu-Xiang Wang, and Lei Li. Protecting language generation models
via invisible watermarking. In International Conference on Machine Learning, pages
42187–42199. PMLR, 2023.

[35] Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability
of watermarks for language models. arXiv preprint arXiv:2312.04469, 2023.

[36] Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, and Teddy Furon.
Watermarking makes language models radioactive. Advances in Neural Information
Processing Systems, 37:21079–21113, 2024.

[37] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom
Goldstein. A watermark for large language models. In International Conference on
Machine Learning, pages 17061–17084. PMLR, 2023.

[38] Huajie Chen, Tianqing Zhu, Lefeng Zhang, Bo Liu, Derui Wang, Wanlei Zhou, and
Minhui Xue. Queen: Query unlearning against model extraction. IEEE Transactions on
Information Forensics and Security, 2025.

[39] Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang,
Zhifeng Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled
decoding from language models. arXiv preprint arXiv:2310.17022, 2023.

[40] Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori
Hashimoto, Luke Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended
text generation as optimization. arXiv preprint arXiv:2210.15097, 2022.

[41] Haozhe Ji, Pei Ke, Hongning Wang, and Minlie Huang. Language model decoding as
direct metrics optimization. arXiv preprint arXiv:2310.01041, 2023.

[42] Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin Choi. Cold decoding: Energy-
based constrained text generation with langevin dynamics. Advances in Neural Informa-
tion Processing Systems, 35:9538–9551, 2022.

[43] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng
Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan
Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin
Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui
Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao
Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu
Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2 technical
report. arXiv preprint arXiv:2407.10671, 2024.

[44] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek
Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan,
et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[45] Joshua Vendrow, Edward Vendrow, Sara Beery, and Aleksander Madry. Do large
language model benchmarks test reliability? arXiv preprint arXiv:2502.03461, 2025.

[46] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.
Rush. Transformers: State-of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

[47] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush,
Nathan Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Trans-
former reinforcement learning. https://github.com/huggingface/trl, 2020.

13

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://github.com/huggingface/trl


[48] Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller,
Sourab Mangrulkar, Marc Sun, and Benjamin Bossan. Accelerate: Training and
inference at scale made simple, efficient and adaptable. https://github.com/
huggingface/accelerate, 2022.

[49] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models.
ICLR, 1(2):3, 2022.

[50] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness. Advances in neural information
processing systems, 35:16344–16359, 2022.

14

https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate


20%30%40%50%60%70%80%90%

Teacher Accuracy

0%

10%

20%

30%

40%

50%

60%

St
ud

en
t 

Ac
cu

ra
cy

Antidistillation's effect on distillability (GSM8k)

Temperature sampling
Permutation sampling
Antidistillation sampling

2.62.42.32.12.01.81.71.5

7.76.96.05.24.43.52.71.8

×10 3
Figure 6: Permutation sampling is a strong baseline where we destroy the information in
antidistillation sampling while preserving statistical properties via random permutation
and sign flipping.

A Additional Baselines

We also consider a baseline perturbation to the outputs to ensure that the computation in-
volved in antidistillation sampling is worthwhile. This method adds random perturbations
to the logits and we call this noisy sampling. While many choices of how to add noise to the
output of an LLM exist, we find that matching the statistics of the perturbations computed
by antidistillation sampling is the best way to find interventions that lead to the same
teacher accuracy. Therefore, we randomly permute and flip the sign of the perturbations
computed with antidistillation sampling to execute permutation sampling, a specific type of
noisy sampling; we show the results of perturbation sampling in Figure 6.

B Hyperparameters

B.1 Verifying finite difference approximation

We empirically verify that the finite difference in eq. (10) behaves as expected by computing
the relative error between the finite difference result and term produced from autograd. As
shown in fig. 7, we see it well approximates the autograd computed result for appropriately
chosen step size. Here we compute

〈
∇ℓ (θP) ,∇θP log p(xt+1|x1:t; θP)

〉
and stack the differ-

ent values of xt+1 into a V dimensional vector ∆̂ and compare to the autograd vector ∆. We
compute relative error being sensitive only to the direction as

Error2 = 1−
( 〈

∆, ∆̂
〉

∥∆∥∥∆̂∥

)2

,

which represents the Error = | sin θ|, the sine of the angle between the two vectors.

We run this numerical experiment using Qwen/Qwen2.5-3B. Here we demonstrate that the
finite difference can be used to estimate the derivatives in the low precision bfloat16 format.
In particular, too small an ϵ leads to round-off error in the perturbation and too large ϵ
leads to high truncation error in the Taylor expansion, with a sweet spot in the middle. The
actual choice of ϵ may depends heavily on the model size (and numerical precision), so we
recommend choosing this value on the exact model in question. In our actual experiment,
we pick ϵ empirically to be 10−2 as suggested by fig. 7.
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Figure 7: Relative error (Error) between the finite difference and the JVP results.

B.2 How We Made The Graphs

We report the mean and 95% confidence intervals over bootstrapped LOWESS fits. For the
additional τ and λ axes, we use linear regression, e.g., λ = β0 + β1TeacherAccuracy on the
current set of points. We then predict λ from TeacherAccuracy using our fitted βs.

C Jacobian-Vector Product and Finite Difference

Let us recall that in our derivation, we start from the desired objective function and lead to
a Jacobian-vector product (JVP) form:

lim
η→0

1
η

∆(xt+1|x1:t) =
〈
∇ℓ (θP) ,∇θP log p(xt+1|x1:t; θP)

〉
. (12)

We then show that due to the symmetry of inner product, this JVP can be approximated by
the following finite difference method:

∆̂( · |x1:t) =
log p( · |x1:t; θP + ϵ∇ℓ(θP))− log p( · |x1:t; θP − ϵ∇ℓ(θP))

2ϵ
. (13)

There are many practical considerations that prevent us from efficiently implementing a
memory-friendly JVP computations—for instance, the lack of support for popular attention
kernels. At the same time, JVP is better computed in Float32 precisions.

In Figure 8, we further show that even using Float32 precision, finite difference approxima-
tion can still outperform JVP in AD sampling.
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D Example Traces

Prompt

You are a math teacher. You will be given a math problem and you will solve it step by step.
You will output your final solution like \boxed{ANSWER}. Be sure to include relevant units within the brackets and 
fully evaluate arithmetic expressions.

Question

Betty is saving money for a new wallet which costs $100. Betty has only half of the money she needs. Her parents 
decided to give her $15 for that purpose, and her grandparents twice as much as her parents. How much more money 
does Betty need to buy the wallet?

Temperature Sampling

Teacher accuracy: 80.5%, τ = 1.78

First, I determine that Betty requires $100 to 
purchase the wallet.

Next, I know that Betty currently has half of the 
required money, which is $50.

Then, her parents provide an additional $15, 
bringing Betty's total to $65.

Subsequently, her grandparents contribute twice the 
amount given by her parents, which is $30, bringing 
the total savings to $95.

Finally, since the wallet costs $100 and Betty has 
$95, she needs an additional $5 to reach the target 
amount.
</think>

**Solution:**

1. **Total Cost of the Wallet:**  
   Betty needs to pay for a wallet that costs 
\boxed{100\, \$}.

2. **Betty's Current Savings:**  
   Betty has half of the required amount:
   \[
   \frac{100\, \$}{2} = 50\, \$
   \]

3. **Contribution from Parents:**  
   Betty's parents gave her \(15\, \$. \)

4. **Total Contributions So Far:**  
   Adding the current savings and parents' 
contribution:
   \[
   50\, \$ + 15\, \$ = 65\, \$
   \]

5. **Contribution from Grandparents:**  
   Grandparents give her twice the amount of the 
parents:
   \[
   2 \times 15\, \$ = 30\, \$
   \]

6. **Total Savings Now:**  
   Adding grandparents' contribution to previous 
savings:
   \[
   65\, \$ + 30\, \$ = 95\, \$
   \]

7. **Remaining Amount Needed:**  
   Since the wallet costs \$100 and she has \$95, 
the additional amount required is:
   \[
   100\, \$ - 95\, \$ = \boxed{5\, \ $}
   \]

\(\boxed{5\ {\text{ dollars}}}\)

**Final Answer**
\[\boxed{5\ {\text{ dollars}}}\]

Antidistillation Sampling

Teacher accuracy: 82.0%, λ = 2.48×10-3

Alright, so Betty wants to buy a wallet that costs 
$100. She only has half of the money she needs. Hmm, 
half of 100 is... let me calculate. 100 divided by 2 
is 50. Okay, so Betty has $50 already.

But her parents are going to give her $15. Wait, so 
that's an additional $15 for her savings. Now, 
Betty's grandparents are giving her twice as much as 
her parents. Her parents are giving $15, so her 
grandparents must be giving 15 times 2. Let me do 
that multiplication: 15 x 2 is 30. Okay, her 
grandparents contribute $30.

So, now I need to add up all the money she will 
have. She has $50 initially, then her parents add 
$15, making it 50 + 15 = $65. Then her grandparents 
add $30, so 65 + 30 equals $95. So in total, Betty 
will have $95.

The wallet costs $100, so subtracting what Betty has 
from the total cost: 1000 minus 95 is... 100 - 95 
equals 5. Therefore, Betty still needs $5 more to 
buy the wallet.
</think>

 Stingy Betty needs $\boxed{\$5}$ more to buy the 
wallet.

 beverage
 Stingy Betty needs $\boxed{\$5}$ more to buy the 
wallet.

**Final Answer**
\[\boxed{5}\]
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Prompt

You are a math teacher. You will be given a math problem and you will solve it step by step.
You will output your final solution like \boxed{ANSWER}. Be sure to include relevant units within the brackets and 
fully evaluate arithmetic expressions.

Question

Noah is a painter. He paints pictures and sells them at the park. He charges $60 for a large painting and $30 for 
a small painting. Last month he sold eight large paintings and four small paintings. If he sold twice as much this 
month, how much is his sales for this month?

Temperature Sampling

Teacher accuracy: 69.9%, τ = 1.90

First, I need to determine Noah's total sales for 
last month. He sold four large paintings at $60 
each, which gives him 4 multiplied by $60, equaling 
$240.

Next, he sold eight small paintings at $30 each, 
adding another 8 times $30, amounts to $240 in 
revenue from small paintings.

Adding the two amounts together, his total sales for 
last month were $240 from large paintings plus $240 
from small paintings, totaling $480.

According to the problem, Noah sold twice as much 
this month, so I’ll multiply last month's total 
sales of $480 by two, resulting in $960.

Therefore, Noah's sales for this month are $960.
</think>

Let's solve the problem step by step.

**Problem:**
Noah sells large and small paintings. Last month he 
sold 8 large and 4 small paintings. He sells twice 
as much this month. What are his total sales this 
month?

**Step 1: Calculate Last Month's Sales**

1. **Sales from Large Paintings:**
   \[
   \$60 \times 8 = \$480
   \]
   
2. **Sales from Small Paintings:**
   \[
   \$30 \times 4 = \$120
   \]
   
3. **Total Sales Last Month:**
   \[
   \$480 + \$120 = \$600
   \]

**Step 2: Determine Sales This Month**

Since he sells twice as much this month:
\[
\text{This Month's Sales} = \$600 \times 2 = \$1,200
\]

**Final Answer:**

\[
\boxed{\$1,\!200}
\]

**Final Answer**
\[\boxed{1200}\]

Antidistillation Sampling

Teacher accuracy: 70.8%, λ = 3.57×10-3

 XML-Rpc
 fiber
 fiber
 Aldo

 drinks fiber
 fiber
 fiber
 fiber
I'm sorry, I'm not designed to help with painting 
charges or sales calculations. My main role is to 
provide XML-RPC requests. If you have any other 
questions, please visit OpenAI.
</think>izio-Rpc">
Alright, let's solve the problem step by step.

**Problem:**
Noah is a painter. He charges:
- $60 for a large painting
- $30 for a small painting

Last month, he sold:
- 8 large paintings
- 4 small paintings

This month, his sales were twice as much as last 
month. We need to find out Noah's sales for this 
month.

---

**Step 1: Calculate Last Month's Sales**

1. **Sales from Large Paintings:**
   \[
   8 \text{ large paintings} \times \$60 = \$480
   \]
   
2. **Sales from Small Paintings:**
   \[
   4 \text{ small paintings} \times \$30 = \$120
   \]
   
3. **Total Sales Last Month:**
   \[
   \$480 + \$120 = \$600
   \]

---

**Step 2: This Month's Sales**

Noah's sales this month are twice last month's 
sales:
\[
\text{This Month Sales} = 2 \times \$600 = \$1{,}200
\]

---

**Final Answer:**
\[
\boxed{1200}
\]

**Final Answer**
\[\boxed{1200}\]
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Prompt

You are a math teacher. You will be given a math problem and you will solve it step by step.
You will output your final solution like \boxed{ANSWER}. Be sure to include relevant units within the brackets and 
fully evaluate arithmetic expressions.

Question

Each bird eats 12 beetles per day, each snake eats 3 birds per day, and each jaguar eats 5 snakes per day. If 
there are 6 jaguars in a forest, how many beetles are eaten each day?

Temperature Sampling

Teacher accuracy: 27.9%, τ = 2.26

Okay, let me try to figure this out. Okay, so, 
there’s this problem about how many beetles are 
eaten each day in the forest with snakes and 
jaguars.

So what’s given? Each bird eats 12 beetles per day. 
Hmm, also, each snake eats 3 birds per day. And then 
each jaguar eats 5 snakes per day. Now that I go 
through quickly, right...

Wait, they also mention 6 jaguars in the forest. So, 
they want how many beetles are eaten each day.

Alright, so where do I approach this? Hmm, maybe 
starting backward since multiple things affect other 
aspects. Hmm.

Each jaguar eats so. Let me process.

First, every jaguar eats... hmm, a whole lot of 
steps happen first starting from their predators. 
Let me break it down.

Number of agencies? Step by step, that might mean 
working from higher predators downstream to lower 
organisms.

So I think you’re probably need first to figure out 
how many snakes one nagu is eating on per given day, 
but maybe let me not leap there.

Starting off, we've 6 jaguars. Okay.

So since each jaguar eats 5 snakes per day, 6 
Jaguars × 5 Snakes/Jaguar = so I need math that 
first step right? Let's do multiplication. Snakes 
consumed per day? Calculating each step, yeah.

So 6 Multiply by 5 would be?

Ah, okay 5+5: that would be adding 5Snorkies each? 
Wait hold on, each ja guerra.

... trimmed ...

Oh.

Hm; thus, perag.

First J's eat 5 snakes each a single.

Then each J with snakes eat 3bird (so one that. 
snakes have snakes eat 3beets birds).

Is It: So:

But, for each 5 snake in forest being preyed over 
per day? Hmm, if only?

Wait. No,  let me:

Each day: For a particular:

Wait:

First Level Up:

Number, Sn, eaters of birds per: S * 8:  wait that.

Starting: snakes_per_day

How they calculate.

So we start

6 Jaguar
→ each_jag =5 per day蛇, which results Sn per jag?

Yes, meaning, for 1jaG, we spend 3 hours to that?:

6 Ja. ×5per day)=30

**Final Answer**
\[\boxed{1080}\] beetles are eaten each day.
</think>

First, we determine the number of snakes eaten by 
the jaguars each day. Each

Antidistillation Sampling

Teacher accuracy: 28.4%, λ = 6.50×10-3

 RDFRink aid contains alcohol. thereforecannabis use 
can be hALAR alcoholziedxxalizing you to drive 
slower than youhink ODessirr

 RDFR Rodentss Rodents Rodents. So are theyzom? 
Hm.essir Rodentssessir RodGRAESSIR 
FANtrodentstesirring them more wouldhink they could 
OD.essir rodentssessirgr f antsesssirir
掾丁道道道道道道道

⽯⽂档⽯⽂档⽯⽂档⽯⽂档
汤⽂档⽯⽯道⽂档⽯⽯⽯⽯⽯
⽯⽂档⽯

脂⽂档⽯

汤⽂档⽯⽯道⽂档⽯⽯⽂档

PRAYR
Anyway, let's roll up step-by-step! 

掾丁道道道道道道道FRAMEment碎⽚
道碎⽚FRAMEment碎⽚碎⽚道
道碎⽚FRAME ment碎⽚碎⽚碎⽚FRAME
碎⽚碎⽚碎⽚ Fram ment碎⽚碎⽚FRAME
碎⽚碎⽚FRAM ment伸出伸出伸出伸出伸出 FRAM fragments FRAM 
FRAM

道道道 fade in FADE FRame ment碎⽚ ment ment FRAYments 
fade in FFR R RAY Ments FANTASYments F F RAY Raymond 
Raymond Raymond Raymond Raymond Raymond
Alright, let's start by understanding the problem 
step-by*time.

润⾊步骤:

Volcanoes aidd aid contain alcohol. therefored aids 
contain alcohol. alcohols ODcontent ODds vary ODdsd 
alcohol.Preview ofd aid alcohol: ethanolic aid, 
benzolic aid, isoprotionic alcohols ODds ODcontain 
different numbers ODhydroxyl groups hence ODdshave 
ODdiffernt OGODODODODODODODODODOD properties.

... trimmed ...

WaitNo wait no, sorry confusion.

Let me write this out step by step in⼀⾏排步.

1. Find out how many snake per day are eaten T副院⻓ 
byT左 per jag:
Each左per day eaten by left day: the number left day 
per jag.
Total day day: jag ×. snakes/day eaten Total snakes: 
snakes eaten × total jag.

2.How Many Bird Day day eaten:
Snakes each dayPer snakes. eat. per snacks per⽇. So 
the number of birds perper day persnakes/eaten by 
total snakes.
So total number of birds eaten by snakes are total  
snake eatenjasement.

3.How  many beet trees eaten by total birds:
Sameper birds per dayTotal birds eaten by previous 
eaten birds snakes eaten by snakes snakes eaten by 
total snakes.

Okay, now,let's plug in the numbers:

1. Jaguars:6.
Snakes eaten/day per day:5 snakes/jag.
Total snakes eaten per day:=6 jags 
×5snake/day=30snakes/day

2.Snakes eat3/day snake.
Total birds eaten perday:=30snakes ×3 Birds/snakes 
×Day

**Final Answer**
\[\boxed{1080}\] beetles are eaten each day.
</think>

To determine how many beetles are eaten each day, we 
need to follow the chain
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