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Paper Assignment as an Optimization

Setting: papers, reviewers,a [0,1] *

Standard model: an integer linear program

Maximize ()= - (maximize )
Subject to =€, (Each paper gets exactly £ reviewers)
=, (Each reviewer gets at most £ papers)
{0,1} ~ (Assignment )
Produces the Maximum- Assignment

Randomness Is Crucial in Peer Review

Motivations of randomness:
1. Robustness to malicious behavior like author-reviewer collusion
2. Counterfactual evaluation of alternative paper assignments
3. Diversity of perspectives and expertise among reviewers
4. Reviewer anonymity after releasing paper assignment data

Randomized model: a continuous linear program
Maximize ()=
Subject to - =e,

[, ] * (Randomized assignment )

Now  denotes the marginal probability of assignment

It was shown by (Jecmen et al. 2020) that a randomized assignment can be

converted into a distribution of deterministic assignments

Currently Deployed Algorithm: PLRA

Probability Limited Randomized Assignment (Jecmen et al. 2020):
Maximize ()=
Subject to - =e,

0 1 °
Hyperparameter Q:

Guarantees each paper-reviewer pair is matched w.p. <

Mainly concerned with robustness to malicious behavior

PLRA has been deployed in multiple iterations of the AAAT conference and is

implemented at popular conference management system OpenReview.net
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Metrics for Randomness

Maximum Probability:

y ()=max { '}
« Already used by PLRA as a constraint

Our proposed metrics:

1. Average maximum probability: ()= 2 max { }
2. Support size: ()= [  =0]

3. Entropy: ()= - -log(1/ )

4. L2 norm: ( )2\/ 2

Our Proposal: Perturbed Maximization (PM)

A Problem with PLRA: The randomness of its assignment depends on Q
Not easy to set, and sometimes suboptimal with any Q
Example: 2 papers, 2 reviewers, equal similarities
Ideal assignment: uniform assignment (right)
For PLRA, multiple solutions maximize the objective function at the

same time. Linear program solvers tend to choose a vertex solution (left).
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Perturbed Maximization (PM):

Maximize ()= )
Subject to =2,

=e,

0. 1 °

Perturbation Function (-):
A non-decreasing, concave function from [0,1] - [0,1]
Intuition: the higher , the lower gain in
Breaks ties evenly, allows trading-off randomness and quality

In the example above:

Aslong as (+) is strictly concave, by Jensen's inequality the only

solution that maximizes is the uniform assignment.
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PM Is a Provable Improvement
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(Informal) On the same input instance, with the same probability limit

and a strictly concave perturbation function (-), PM outperforms PLRA

under any of the proposed randomness measures without loss in solution
if the similarity matrix is:

Discrete & Random

Blockwise Dominant or

Experiments on Real-World Datasets

On the (discrete) bidding data of AAMAS2015, PM has exactly the same
with PLRA (where PLRA is optimal), and
outperforms PLRA on all other randomness measures

performance on
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On the (continuous) similarities of ICLR2018, PM sacrifices
slightly compared with PLRA (the optimal ), but still improves

over PLRA significantly on all other randomness measures
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