
A One-Size-Fits-All Approach to Improving Randomness in Paper Assignment

Paper Assignment as an Optimization

Setting: �� papers, �� reviewers, a similarity matrix � ∈ [0, 1]��×��

Standard model: an integer linear program
Maximize �������(�) =  �,� ��,� ∙ ��,� (maximize Quality)

Subject to  � ��,� =ℓ�, ∀� (Each paper gets exactly ℓ� reviewers)

 � ��,� ≤ℓ�, ∀� (Each reviewer gets at most ℓ� papers)

� ∈ {0, 1}��×�� (Assignment �)
Produces the Maximum-Quality Assignment
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Randomness Is Crucial in Peer Review

Currently Deployed Algorithm: PLRA

Our Proposal: Perturbed Maximization (PM)

PM Is a Provable Improvement

Experiments on Real-World Datasets

Metrics for Randomness

Motivations of randomness:
1. Robustness to malicious behavior like author-reviewer collusion
2. Counterfactual evaluation of alternative paper assignments
3. Diversity of perspectives and expertise among reviewers
4. Reviewer anonymity after releasing paper assignment data

Randomized model: a continuous linear program
Maximize �������(�) =  �,� ��,� ∙ ��,�
Subject to  � ��,� =ℓ�, ∀�

 � ��,� ≤ℓ�, ∀�
� ∈ [�, �]��×�� (Randomized assignment �)

Now ��,� denotes the marginal probability of assignment

It was shown by (Jecmen et al. 2020) that a randomized assignment can be 
converted into a distribution of deterministic assignments

Probability Limited Randomized Assignment (Jecmen et al. 2020):
Maximize �������(�) =  �,� ��,� ∙ ��,�
Subject to  � ��,� =ℓ�, ∀�

 � ��,� ≤ℓ�, ∀�
� ∈ [0, �]��×��

Hyperparameter Q:

Guarantees each paper-reviewer pair is matched w.p. ≤ �
Mainly concerned with robustness to malicious behavior

PLRA has been deployed in multiple iterations of the AAAI conference and is 
implemented at popular conference management system OpenReview.net

Maximum Probability:
• �������(�) = max�,�{��,�}
• Already used by PLRA as a constraint

Our proposed metrics:
1. Average maximum probability: ������(�) = 1

��
 �max�{��,�}

2. Support size: �������(�) =  �,��[��,� > 0]
3. Entropy: �������(�) =  �,� ��,� ∙ log(1 / ��,�)

4. L2 norm: ������(�) =  �,� ��,�2

A Problem with PLRA: The randomness of its assignment depends on Q
Not easy to set, and sometimes suboptimal with any Q

Example: 2 papers, 2 reviewers, equal similarities

Ideal assignment: uniform assignment (right)

For PLRA, multiple solutions maximize the objective function at the 
same time. Linear program solvers tend to choose a vertex solution (left).

Perturbed Maximization (PM):
Maximize ��������(�) =  �,� �(��,�) ∙ ��,�
Subject to  � ��,� =ℓ�, ∀�

 � ��,� ≤ℓ�, ∀�
� ∈ [0, �]��×��

Perturbation Function �(∙):
A non-decreasing, concave function from [0,1] → [0,1]
Intuition: the higher ��,�, the lower gain in ��������
Breaks ties evenly, allows trading-off randomness and quality

In the example above:
As long as �(∙) is strictly concave, by Jensen's inequality the only

solution that maximizes �������� is the uniform assignment.

(Informal) On the same input instance, with the same probability limit � 
and a strictly concave perturbation function �(∙), PM outperforms PLRA 
under any of the proposed randomness measures without loss in solution 
Quality if the similarity matrix � is:

On the (discrete) bidding data of AAMAS2015, PM has exactly the same 
performance on ������� with PLRA (where PLRA is optimal), and 
outperforms PLRA on all other randomness measures

On the (continuous) similarities of ICLR2018, PM sacrifices ������� 
slightly compared with PLRA (the optimal �������), but still improves 
over PLRA significantly on all other randomness measures
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