

Yixuan Even Xu Tsinghua

Paper Assignment as an Optimization

Setting: n_p **papers**, n_r **reviewers**, a **similarity matrix** $S \in [0, 1]^{n_p \times n_r}$ Standard model: an integer linear program

Maximize Quality(x) = $\sum_{p,r} x_{p,r} \cdot S_{p,r}$ (maximize Quality) **Subject to** $\sum_{r} x_{p,r} = \ell_p, \forall p$ (Each **paper** gets **exactly** ℓ_p **reviewers**) $\sum_{n} x_{p,r} \leq \ell_r, \forall r \quad (\text{Each reviewer gets at most } \ell_r \text{ papers})$ $x \in \{0, 1\}^{n_p \times n_r}$ (Assignment x)

Produces the Maximum-Quality Assignment

Randomness Is Crucial in Peer Review

Motivations of randomness:

- Robustness to malicious behavior like author-reviewer collusion
- Counterfactual evaluation of alternative paper assignments 2.
- Diversity of perspectives and expertise among reviewers
- Reviewer anonymity after releasing paper assignment data

Randomized model: a continuous linear program

Maximize Quality(x) = $\sum_{p,r} x_{p,r} \cdot S_{p,r}$ **Subject to** $\sum_{r} x_{p,r} = \ell_p, \forall p$ $\sum_{p} x_{p,r} \leq \ell_r$, $\forall r$ $x \in [0, 1]^{n_p \times n_r}$ (Randomized assignment x)

Now $x_{p,r}$ denotes the **marginal probability** of assignment

It was shown by (Jecmen et al. 2020) that a **randomized assignment** can be converted into a **distribution of deterministic assignments**

Currently Deployed Algorithm: PLRA

Probability Limited Randomized Assignment (Jecmen et al. 2020):

Maximize Quality
$$(x) = \sum_{p,r} x_{p,r} \cdot S_{p,r}$$

Subject to $\sum_r x_{p,r} = \ell_p, \forall p$
 $\sum_n x_{p,r} \leq \ell_r, \forall r$

 $\boldsymbol{x} \in [0, \boldsymbol{Q}]^{n_p \times n_r}$ Hyperparameter **Q**:

Guarantees each **paper-reviewer** pair is matched w.p. $\leq Q$ Mainly concerned with robustness to malicious behavior

PLRA has been deployed in multiple iterations of the **AAAI** conference and is implemented at popular conference management system **OpenReview.net**

A One-Size-Fits-All Approach to Improving Randomness in Paper Assignment

Steven Jecmen **Carnegie Mellon**

Zimeng Song Independent

Metrics for Randomness
Maximum Probability:
• Maxprob(\boldsymbol{x}) = max _{p,r} { $x_{p,r}$ }
Already used by PLRA as a constraint
our proposed metrics:
1. Average maximum probability: $AvgMax(x) = \frac{1}{n_p} \sum_p max_r \{x_{p,r}\}$
2. Support size: Support(x) = $\sum_{p,r} 1[x_{p,r} > 0]$
3. Entropy: Entropy(\boldsymbol{x}) = $\sum_{p,r} x_{p,r} \cdot \log(1 / x_{p,r})$
4. L2 norm: L2Norm(x) = $\sqrt{\sum_{p,r} x_{p,r}^2}$
Our Proposal: Perturbed Maximization (PM)
Problem with PLRA: The randomness of its assignment depends on Q
Not easy to set, and sometimes suboptimal with any Q
Example: 2 papers, 2 reviewers, equal similarities
Ideal assignment: uniform assignment (right)
For PLRA, multiple solutions maximize the objective function at the
same time. Linear program solvers tend to choose a vertex solution (left).
0.8
0.5
0.2
$\circ \frown \circ \circ$
0.8 0.5
0.8 $0.5DLRA(Q = 0.8)$ Ideal
$0.8 \qquad 0.5$ $DLRA(Q = 0.8) \qquad Idea$ Perturbed Maximization (PM).
$0.\$ \qquad 0.5$ $DLRA(@ = 0.\$) \qquad Idea)$ Perturbed Maximization (PM): Maximize POuality(x) = $\sum_{x \in I} f(x_x_x) \in S$
o.§ PLRA(Q = o.g) Perturbed Maximization (PM): Maximize PQuality(x) = $\sum_{p,r} f(x_{p,r}) \cdot S_{p,r}$ Subject to $\sum x_{p,r} = \ell$ $\forall n$
o.§ PLRA(Q = o.R) PLRA(Q = o.R) Ideal Pleal $Subject to \sum_{r} x_{p,r} = \ell_{p}, \forall p$ $\sum x_{r} \leq \ell_{r} \forall r$
o.§ plea (Q = o.k) Idea) erturbed Maximization (PM): Maximize PQuality(x) = $\sum_{p,r} f(x_{p,r}) \cdot S_{p,r}$ Subject to $\sum_r x_{p,r} = \ell_p, \forall p$ $\sum_p x_{p,r} \le \ell_r, \forall r$ $x \in [0, O]^{ll} p \times ^{ll} r$
o.\$ PLRA(Q = o.k) Jean Perturbed Maximization (PM): Maximize PQuality(x) = $\sum_{p,r} f(x_{p,r}) \cdot S_{p,r}$ Subject to $\sum_r x_{p,r} = \ell_p, \forall p$ $\sum_p x_{p,r} \leq \ell_r, \forall r$ $x \in [0, Q]^{n_p \times n_r}$ Parturbation Function $f(x)$:
0.8 PLRA(Q = 0.8) PLRA(Q = 0.8) Idea) Perturbed Maximization (PM): Maximize PQuality(x) = $\sum_{p,r} f(x_{p,r}) \cdot S_{p,r}$ Subject to $\sum_r x_{p,r} = \ell_p, \forall p$ $\sum_p x_{p,r} \le \ell_r, \forall r$ $x \in [0, Q]^{n_p \times n_r}$ Perturbation Function $f(\cdot)$:
o.\$ PLRA(Q = o.R) Jean Perturbed Maximization (PM): Maximize PQuality(x) = $\sum_{p,r} f(x_{p,r}) \cdot S_{p,r}$ Subject to $\sum_r x_{p,r} = \ell_p, \forall p$ $\sum_p x_{p,r} \leq \ell_r, \forall r$ $x \in [0, Q]^{n_p \times n_r}$ Perturbation Function $f(\cdot)$: A non-decreasing, concave function from $[0,1] \rightarrow [0,1]$ Intuition: the higher x = the lower gain in POwelity
o.\$ PLPA(Q = o.R) Jean Perturbed Maximization (PM): Maximize PQuality(x) = $\sum_{p,r} f(x_{p,r}) \cdot S_{p,r}$ Subject to $\sum_r x_{p,r} = \ell_p, \forall p$ $\sum_p x_{p,r} \le \ell_r, \forall r$ $x \in [0, Q]^{n_p \times n_r}$ Perturbation Function $f(\cdot)$: A non-decreasing, concave function from $[0,1] \rightarrow [0,1]$ Intuition: the higher $x_{p,r}$, the lower gain in PQuality Breaks ties evenly, allows trading-off randomness and quality
o.\$ PLRA(Q = o.k) $IdeaPerturbed Maximization (PM):Maximize PQuality(x) = \sum_{p,r} f(x_{p,r}) \cdot S_{p,r}Subject to \sum_r x_{p,r} = \ell_p, \forall p\sum_p x_{p,r} \leq \ell_r, \forall rx \in [0, Q]^{n_p \times n_r}Perturbation Function f(\cdot):A non-decreasing, concave function from [0,1] \rightarrow [0,1]Intuition: the higher x_{p,r}, the lower gain in PQualityBreaks ties evenly, allows trading-off randomness and qualityIn the example above:$
o.\$ 0.5 PLRA(Q = o.k) Jean Perturbed Maximization (PM): Maximize PQuality(x) = $\sum_{p,r} f(x_{p,r}) \cdot S_{p,r}$ Subject to $\sum_r x_{p,r} = \ell_p, \forall p$ $\sum_p x_{p,r} \leq \ell_r, \forall r$ $x \in [0, Q]^{n_p \times n_r}$ Perturbation Function $f(\cdot)$: A non-decreasing, concave function from $[0,1] \rightarrow [0,1]$ Intuition: the higher $x_{p,r}$, the lower gain in PQuality Breaks ties evenly, allows trading-off randomness and quality In the example above: As long as $f(x)$ is strictly concave by Jonsen's increasing the only

PM Is a Provable Improvement

[**nformal**) On the same input instance, with the same probability limit *Q* nd a strictly concave perturbation function $f(\cdot)$, PM outperforms PLRA nder **any** of the proposed randomness measures **without loss** in solution **uality** if the similarity matrix **S** is:

Experiments on Real-World Datasets

In the (discrete) bidding data of **AAMAS2015**, PM has exactly the same erformance on Maxprob with PLRA (where PLRA is optimal), and utperforms PLRA on **all** other randomness measures

on the (continuous) similarities of **ICLR2018**, PM sacrifices **Maxprob** ightly compared with PLRA (the **optimal Maxprob**), but still improves ver PLRA significantly on **all** other randomness measures

