
Deviate or Not: Learning Coalition Structures
with Multiple-bit Observations in Games

Yixuan Even Xu1, Zhe Feng2, Fei Fang1

1Carnegie Mellon University
2Google Research

{yixuanx,feif}@cs.cmu.edu, zhef@google.com

Abstract

We consider the Coalition Structure Learning (CSL) problem
in multi-agent systems, motivated by the existence of coali-
tions in many real-world systems, e.g., trading platforms and
auction systems. In this problem, there is a hidden coalition
structure within a set of n agents, which affects the behav-
ior of the agents in games. Our goal is to actively design a
sequence of games for the agents to play, such that observa-
tions in these games can be used to learn the hidden coalition
structure. In particular, we consider the setting where in each
round, we design and present a game together with a strategy
profile to the agents, and receive a multiple-bit observation –
for each agent, we observe whether or not they would like to
deviate from the specified strategy. We show that we can learn
the coalition structure in O(logn) rounds if we are allowed
to design any normal-form game, matching the information-
theoretical lower bound. For practicality, we extend the result
to settings where we can only choose games of a specific for-
mat, and design algorithms to learn the coalition structure in
these settings. For most settings, our complexity matches the
theoretical lower bound up to a constant factor.

1 Introduction
Coalitions and collusive behavior are common in the real
world. In auction systems, bidders may form coalitions to
coordinate bids and exploit mechanisms for better odds
of winning (Milgrom 2004). On ridesharing platforms like
Uber and Lyft, some drivers might disconnect simultane-
ously to create an artificial shortage, triggering a price surge
they can later benefit from (Hamilton 2019; Sweeney 2019;
Dowling 2023). While illegal collusion, like price fixing, is
regulated by agencies such as the SEC in the United States,
it remains challenging to eliminate, as seen in scandals like
the LIBOR Scandal (Wikipedia 2024). As AI systems be-
come more advanced and widely used in domains like stock
trading and autonomous driving, regulating these AI agents
presents a growing challenge as seen by regulators and re-
searchers (EPRS 2020; Qu, Tang, and Ma 2023).

In response to such concerns, the problem of coalition
structure learning (CSL) (Xu, Ling, and Fang 2024) has re-
cently gained attention. In CSL, a platform aims to figure out
which agents are in a coalition by designing a small number

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of games for the agents to play and make observations on the
outcomes of these games. Notably, more than one coalition
may exist simultaneously. In practice, the platform could
represent a regulator, like an auction or ridesharing platform,
aiming to detect collusion or design better mechanisms.

However, the existing study on CSL relies on a strong
assumption that the platform can only observe whether a
specified strategy profile is a Nash equilibrium (NE) in each
round. With this single-bit observation oracle and other as-
sumptions, optimal algorithms require Θ(n log n) rounds of
games to learn the coalition structure, where n is the num-
ber of agents. Such an observation oracle is too restrictive for
two reasons. First, for real-world systems with a large num-
ber of agents, Θ(n log n) rounds is still prohibitively large.
Second, it may be possible for the platform to know which
agents would deviate from the specified strategy profile. For
example, a ridesharing platform could observe which drivers
disconnect from the platform given a pricing scheme.

In this paper, we aim to address this limitation and con-
sider a multiple-bit observation oracle: the platform can ob-
serve an n-dimensional binary vector in each round, where
the i-th bit indicates whether or not agent i would like to de-
viate from the specified strategy profile. This oracle allows
the platform to gain n bits of information in each round,
which is significantly more informative than the single-bit
observation oracle, allowing the platform to learn the coali-
tion structure with much fewer rounds. However, from a
technical perspective, switching from the single-bit obser-
vation oracle to the multiple-bit observation oracle funda-
mentally changes the problem. With the single-bit obser-
vation, the platform can choose the game to use to get the
next bit of observation, which means it is easy to ensure that
each bit of observation brings in information. However, with
multi-bit observation, the platform will get n-bit informa-
tion in a batch, and it is often inevitable that these n-bits
contain repetitive or highly correlated information. There-
fore, the key challenge in algorithm design is how to de-
sign the games so that the n bits of observation are more
de-correlated and contain more information.

1.1 Our Results
Depending on the specific scenario of application, some-
times external constraints may limit the type of games that
can be designed. For example, in an auction platform, the al-

Type of Games Lower Bound Complexity Section
Normal-Form log2 n−O(log log n) log2 n+ 2 Section 3
Congestion log2 n−O(log log n) log2 n+ 2 Appendix A
Graphical max(log2 n, n/d)−O(log log n) 2n/d+ 2 log2 d+ 1 Appendix B
Auctions log2 n−O(log log n) (1 + log2 n)(1 + c) + 1 Section 4

Table 1: Summary of results.

gorithm may only use auctions. Therefore, we study differ-
ent settings of the type of games the algorithm may design.
We summarize our results for different settings in Table 1.

Information-theoretical lower bound. We first show
that any algorithm that learns the coalition structure requires
at least log2 n − O(log log n) rounds regardless of the type
of games used, where n is the number of agents.

Normal-form games. Normal-form games are a general
class of games. We consider the case when the platform can
design any normal-form game and there are no external con-
straints on the type of games that can be designed. We show
an algorithm, simultaneous binary search, that can learn the
coalition structure in log2 n + 2 rounds using directed pris-
oner’s dilemmas, a type of designed games for agents to play
to elicit coalition structures. The number of rounds matches
the lower bound almost exactly.

Congestion games. Congestion games (Rosenthal 1973)
are a well-studied type of games that model the allocation of
resources, and has demonstrated its importance in real-world
transportation system. For CSL in congestion games, we
show that with a different type of games – directed Braess’s
paradoxes – the simultaneous binary search algorithm can
be adapted to learn the coalition structure with congestion
games. The number of rounds required is also log2 n+ 2.

Graphical games. Graphical games (Kearns, Littman,
and Singh 2001) are another thoroughly researched class of
games. Investigating CSL with graphical games can be use-
ful in contexts like social networks. We consider degree-d
graphical games, i.e., each agent has at most d neighbors
in the underlying graph. In the negative direction, we show
that any algorithm for the problem requires at least ⌈n−1

d ⌉
rounds. In the positive direction, we design an algorithm that
couples simultaneous binary search with the idea of block
decomposition, i.e., to divide the agents into blocks of size
⌊d2⌋. See the construction of Algorithm 5 and Fig. 5 for de-
tails of this technique. Our algorithm learns the coalition
structure in 2n/d+2 log2 d+1 rounds. Given the two lower
bounds, this algorithm is optimal up to a constant factor.

Auctions. Finally, we study CSL with auctions, in particu-
lar, second-price auctions with personalized reserves, which
are widely adopted in online advertising systems. The for-
mat of auctions is much more restrictive and challenging
than the previous types of games since there is only one win-
ner in an auction, and it is difficult to elicit information from
the other players. Our algorithm in this case learns the coali-
tion structure in (1+log2 n)(1+c)+1 rounds, where c is the
size of the largest coalition. When the coalitions are small,
the number of rounds required is close to the lower bound.

1.2 Related Work
Our work lies in the general research direction of learning in
games (Fudenberg and Levine 1998). In particular, our work
is closely related to the line of research on Inverse Game
Theory, e.g., (Waugh, Ziebart, and Bagnell 2011; Kuleshov
and Schrijvers 2015; Ling, Fang, and Kolter 2018; Letch-
ford, Conitzer, and Munagala 2009), where these previous
papers aim to infer the parameters and underlying payoffs
of a game by observing the behavior of players. Our work
adopts this perspective but seeks to understand the coali-
tion structure in games, which is not considered in prior
works. By strategically and adaptively selecting defender
strategies and observing the attacker’s best responses, Bal-
can et al. (2015); Haghtalab et al. (2016); Wu et al. (2022)
show that one can uncover the underlying utility functions
driving attacker behavior in Stackelberg security games. Our
work learns in a similar adaptive manner but focuses on the
coalition structure among agents. In addition, learning coali-
tion structure has a fundamental difference from the above
existing literature since the space of all possible coalition
structures is exponentially large.

The closest related work is (Xu, Ling, and Fang 2024),
where they focus on learning coalition structure through a
single bit feedback, i.e., the game designed in the learning
process only returns one-bit information – whether a speci-
fied strategy profile is a NE or not. In this work, we strictly
generalize the model proposed by Xu, Ling, and Fang (2024)
that allows us to observe multiple-bit feedback rather than
just binary feedback. This flexibility strictly increases the
set of possible observations and thus the difficulty of de-
signing the games. Moreover, Bonjour, Aggarwal, and Bhar-
gava (2022); Mazrooei, Archibald, and Bowling (2013) pro-
vide general approaches to detect one (collusion) coalition
in multi-agent games, whereas, our work aims to find the
entire coalition structure in games.

There is also a line of research on learning with re-
vealed preference feedback, e.g., (Beigman and Vohra 2006;
Zadimoghaddam and Roth 2012; Balcan et al. 2014; Blum,
Haghtalab, and Procaccia 2014; Amin et al. 2015; Roth,
Ullman, and Wu 2016), in which they target to predict
the strategic agents’ behavior or optimize the profit of
the decision maker, through the revealed preference feed-
back from strategic agents. In this paper, we assume that
we can observe the best response feedback of the agents
for the games, where each game is carefully designed to
elicit information on the coalition structure within a set of
agents. Loosely related work includes no-regret learning in
games (Cesa-Bianchi and Lugosi 2006; Daskalakis, Fishel-
son, and Golowich 2021). Indeed, if there is a cost to per-
form one game to learn coalition structure, our learning pro-

cess achieves constant regret given the number of rounds
needed to identify all coalitions only depends on the number
of agents and the structure of the underlying games.

2 Notations and Preliminaries
Consider a set N = {1, 2, . . . , n} of n strategic agents.
A coalition S ⊆ N is a nonempty subset of the agents,
in which the agents can coordinate with each other in
games. We assume there is a coalition structure S∗ =
{S1

∗, S2
∗, . . . , Sm

∗} among these agents, which is a set par-
tition of N , and each agent in N belongs to exactly one of
these mutually disjoint coalitions. We use [i]S∗ to denote the
coalition containing agent i under S∗. S∗ is not public infor-
mation, but agents in each coalition know the other agents
in the same coalition. In the Coalition Structure Learning
(CSL) problem, our goal is to actively design a sequence of
games for the agents to play, such that observations in these
games can be used to learn the underlying coalition structure
S∗. Specifically, we interact with the agents in a sequence of
rounds. Each round, we design a game G along with a strat-
egy profile Σ = (σ1, σ2, . . . , σn) in G for the agents, and we
make an observationO(G,Σ) about the strategy profile Σ in
G. The task is to learn the underlying coalition structure S∗.

Behavior model. We assume that the agents are rational
and strategic. When playing a game G, agents in the same
coalition under S∗ can coordinate with each other to choose
actions and will share rewards after the game. Thus, they ef-
fectively play as a joint player whose action space and utility
are, respectively, the Cartesian product of the action spaces
and the sum of utilities of the agents in that coalition. Since
the agents are not aware of the underlying coalition structure
beyond their own coalitions, the information in the game
is incomplete. We do not assume the agents’ full behavior
model, but focus on the agents’ deviation decisions from the
specified strategy profile.

Multiple-bit observation oracle. In this paper, we con-
sider the multiple-bit observation oracle as opposed to the
single-bit observation oracle considered in (Xu, Ling, and
Fang 2024). The observation O(G,Σ) is an n-dimensional
binary vector, where the i-th bit Oi(G,Σ) ∈ {True,False}
indicates whether or not agent i would like to deviate from
the specified strategy σi when the coalition is best respond-
ing as a whole. In particular, given a game G and a strategy
profile Σ, for each coalition S ∈ S∗, agents in S would first
determine whether ΣS is a joint best response to the other
agents’ specified strategy Σ−S in G. If it is, thenOi = False
for each agent i ∈ S, i.e., they would decide not to devi-
ate. Otherwise, they would compute a possible joint best
response BR(S,Σ) to the other agents’ specified strategy
Σ−S in G. Then, they would compute the deviation decision
Oi = I[BRi(S,Σ) ̸= σi] for each agent i ∈ S. The ob-
servation O(G,Σ) is the concatenation of the decisions of
all agents in N . If there are multiple best responses for a
coalition, we assume that the agents in that coalition would
choose any of them in the worst case. We will use “query the
observation oracle” or “query (G,Σ)” to refer to the process
of designing a game G and a strategy profile Σ and receiving
the observation O(G,Σ).

2.1 Lower Bound of the Number of Rounds
We first show a lower bound on the number of rounds re-
quired to solve the Multiple-bit CSL problem. The lower
bound is based on an information-theoretical argument simi-
lar to (Xu, Ling, and Fang 2024). Note that this lower bound
holds for any type of games that the algorithm may design.
Theorem 2.1. Any algorithm that solves the Multiple-bit
CSL problem requires at least log2 n−O(log log n) rounds
of interactions with the agents in the worst case.

Proof. In each round, the algorithm receives at most n bits
of information. As the number of possible set partitions of
N is the Bell number Bn, to distinguish between them, we
need at least ⌈log2 Bn⌉ = n log2 n − O(n log2 log2 n) bits
of information. The equation follows from the asymptotic
expression of Bell number established in (De Bruijn 1981).
The theorem then follows.

3 Multiple-bit CSL with
Normal-form Games

We show in this section an algorithm that solves Multiple-
bit CSL with normal-form games in log2 n+2 rounds. Note
that the number of rounds matches the lower bound in The-
orem 2.1 up to O(log log n). The main idea of the algorithm
is to use binary search to find another agent in the same
coalition for each agent simultaneously. We start by defin-
ing game-strategy pairs and a special pair that we call the
directed prisoner’s dilemma, which we use in the algorithm.
Definition 3.1. A game-strategy pair (G,Σ) is a n-player
normal-form game along with a pure strategy profile Σ in G.
Here, Σ is called the specified strategy profile of (G,Σ).
Definition 3.2. For i ∈ N, j ∈ N , a directed prisoner’s
dilemma P(i, j) is a game-strategy pair (G,Σ). In game G,
agent j has two actions {C,D}, and all other agents only
have one action {D}. If agent j plays C, then i and j receive
utility 2 and −1 respectively. Otherwise they both receive 0
utility. All other agents always receive 0 utility. Σ is the pure
strategy profile where all agents play D.

C D
D (2,−1) (0, 0)

Figure 1: The payoff table of agents i and j in the directed
prisoner’s dilemma P(i, j). Agent i is the row player and
agent j is the column player. The others only have one action
and are not shown in the table.

Given the construction of directed prisoner’s dilemma,
we have the following observation.
Lemma 3.1. Let i, j ∈ N and O = O(P(i, j)). Then,
Oj = True if and only if agent i and agent j are in the same
coalition under S∗. Moreover, Ok = False for k ∈ N \ {j}.

Proof. If agent i and agent j are in the same coalition under
S∗, then playing C is a dominant strategy for agent j’s coali-
tion. Otherwise, playing D is a dominant strategy. Therefore,

Oj = True if and only if agent i and agent j are in the same
coalition under S∗. Moreover, since all agents other than j
only have one action {D}, Ok = False for k ∈ N \{j}.

Lemma 3.1 shows that we can use directed prisoner’s
dilemmas to determine whether two agents are in the same
coalition under S∗. However, querying a single directed pris-
oner’s dilemma is not efficient as we only get 1 bit of infor-
mation. To utilize the information from the observation ora-
cle more efficiently, we will need to consider the product of
multiple directed prisoner’s dilemmas.

Definition 3.3 ((Xu, Ling, and Fang 2024)). Let
(G1,Σ1), (G2,Σ2) be two game-strategy pairs where
Ax,i, ux,i are the action set and utility function of agent i
in Gx respectively for x ∈ {1, 2}. Let Σ1 = (σ1,i)i∈N and
Σ2 = (σ2,i)i∈N . The product of (G1,Σ1) and (G2,Σ2) is
a game-strategy pair (Gp,Σp). Here, Gp is a normal-form
game with action set A1,i × A2,i and utility function
u1,i + u2,i for each i ∈ N . Σp,i = (σ1,i, σ2,i)i∈N .
We denote the product of (G1,Σ1) and (G2,Σ2) as
(G1,Σ1) × (G2,Σ2) or

∏2
x=1(Gx,Σx). The game-strategy

pairs (G1,Σ1), (G2,Σ2) are called the factors of (Gp,Σp).

Lemma 3.2. Let {(ix, jx) | x ∈ {1, 2, . . . , k}} be k pairs
of agents and O = O(

∏k
x=1 P(ix, jx)). Then, Oj = True

if and only if there exists x ∈ {1, 2, . . . , k} such that jx = j
and ix ∈ [j]S∗ .

Proof. By Definition 3.3, playing the product game is equiv-
alent to separately playing each factor game, and summing
up the resulting utilities of each agent. Therefore, agent j de-
cides to deviate in the product game

∏k
x=1 P(ix, jx) if and

only if agent j decides to deviate in at least one factor game.
The result then follows from Lemma 3.1.

A graphical interpretation of Lemma 3.2 is as follows.
When we query the game-strategy pair

∏k
x=1 P(ix, jx),

consider a directed graph where each vertex represents an
agent and each edge (jx, ix), x ∈ {1, 2, . . . , k} represents
P(ix, jx). The observation tells us for each vertex if any
of its outgoing neighbors in this constructed graph is in the
same coalition. With Lemma 3.2, we are ready for our Al-
gorithm 1 for Multiple-bit CSL with normal-form games.

Intuitively, given an agent j, if we want to find another
agent i (i < j) in the same coalition with j, we can
query a game-strategy pair

∏
k∈Tj

P(k, j) where Tj =

{1, 2, . . . , j − 1} initially. According to Lemma 3.2, we
will know whether there is such an agent in Tj from the
j-th bit of the observation. If there is such an agent, we
can then bisect the set Tj and apply binary search to find
this agent. Moreover, this binary search can be done si-
multaneously for different agents. For example, given two
agents j and j′, we can construct the game-strategy pairs∏

k∈Tj
P(k, j) ×

∏
k∈Tj′

P(k, j′) and apply binary search
at the same time on Tj and Tj′ using the j-th and j′-th bits
of the observation. This is because the j-th bit in the obser-
vation vector only depends on whether there exists another
agent in Tj in the same coalition with agent j, and the same
argument applies to agent j′.

Algorithm 1: Simultaneous Binary Search
Input: The number of agents n and the multiple-bit

observation oracle O.
Output: A coalition structure S of the agents.
1 Query

∏
i∈N,j∈N,i<j P(i, j) and observe O;

2 Let Tj ← {1, 2, . . . , j − 1} if Oj = True else ∅
for each j ∈ N ;

3 while ∃j ∈ N such that |Tj | ≥ 2 do
4 Let Lj ← {the smallest ⌊ |Tj |

2 ⌋ elements in Tj}
for each j ∈ N ;

5 Let Rj ← Tj \ Lj for each j ∈ N ;
6 Query

∏
j∈N,i∈Lj

P(i, j) and observe O;
7 Let Tj ← Lj if Oj = True else Rj

for each j ∈ N ;
8 Let S ← {{1}, {2}, . . . , {n}};
9 for j ∈ N such that |Tj | ≠ ∅ do

10 Let i← the only element in Tj ;
11 Merge [i]S and [j]S in S;
12 return S;

Algorithm 1 leverages this intuition and works in two
stages. In the first stage (Lines 1 to 7), we try to find for each
agent j the smallest index of the agents in [j]S∗ . To do this,
we first query

∏
i∈N,j∈N,i<j P(i, j) (Line 1). In this game,

agent j has the incentive to deviate only when another agent
i with a smaller index than j is in the same coalition with
j. Therefore, using the j-th bit from the observation, we can
determine whether agent j is the agent with the smallest in-
dex in [j]S∗ (Line 2). For agents who are not, we then use
binary search to locate the smallest indexed agents in their
coalitions simultaneously (Lines 3 to 6). In the second stage
(Lines 8 to 11), it merges each coalition in S∗ together ac-
cording to the result of the first stage.

We provide an example of Algorithm 1 in Fig. 2.

Theorem 3.1. Algorithm 1 solves Multiple-bit CSL with
normal-form games in log2 n+ 2 rounds.

Proof. We first show the correctness of the algorithm. To do
this, we will show two claims: (i) after Lines 1 to 7, for each
j ∈ N , if j is the agent with the smallest index in [j]S∗ ,
Tj = ∅, otherwise, Tj contains only the smallest index of
the agents in [j]S∗ ; (ii) after Lines 8 to 11, S = S∗.

For (i), if j is the agent with the smallest index in [j]S∗ ,
then by Lemma 3.2, Oj = False, and Tj = ∅ on Line
2. Throughout the algorithm, Tj remains ∅. Otherwise, Tj

contains the smallest index of the agents in [j]S∗ after Line
2. In the while loop (Line 3 to 7), Tj is updated to Lj if Oj =
True, and to Rj otherwise. Since Lj contains the smallest
⌊|Tj |/2⌋ elements in Tj , by Lemma 3.2, Oj = True if and
only if the smallest index of the agents in [j]S∗ is in Lj .
Therefore, after one iteration of the loop, Tj still contains
only the smallest index of the agents in [j]S∗ , while the size
of Tj is halved. The loop terminates after |Tj | = 1, and Tj

contains only the smallest index of the agents in [j]S∗ .
For (ii), since every agent j is either the agent with the

1 3

2 4

(a) First query

1 3

2 4

T3
T4

(b) Second query

1 3

2 4T3

T4

(c) Final result

Figure 2: Example execution of Algorithm 1 when S∗ = {{1, 4}, {2, 3}}. The vertices represent the agents, the edges represent
the directed prisoner’s dilemmas that the algorithm queries each time, and the dashed rectangles represent the sets Tj . In the
first query, the algorithm queries

∏
i∈N,j∈N,i<j P(i, j) (Line 1) as shown in (a). Using the observations, the algorithm sets

T1 = T2 = ∅, T3 = {1, 2}, and T4 = {1, 2, 3} (Line 2). In the second query, T3 is bisected into L3 = {1}, R3 = {2}, T4 is
bisected into L4 = {1}, R4 = {2, 3}, and the algorithm queries

∏
j∈N,i∈Lj

P(i, j) (Lines 3 to 6) as shown in (b). Using the
observations, the algorithm sets T3 = L3 = {1} and T4 = R4 = {2, 3} (Line 7) as shown in (c). Finally, the algorithm merges
{1} and {4}, and {2} and {3} together to recover the coalition structure (Lines 8 to 11).

smallest index in [j]S∗ or merged with that agent, each coali-
tion is merged in S after Lines 8 to 11. Thus S becomes the
same as S∗.

Next, we show the complexity of the algorithm. The while
loop in Lines 3 to 7 runs at most ⌈log2 n⌉ times, and each
iteration requires 1 query. Together with the query on Line
1, the total number of queries is at most ⌈log2 n⌉ + 1 ≤
log2 n+ 2.

Multiple-bit CSL with Other Types of Games. A natural
next step after this section is to consider the case where the
algorithm can only design games of a specific type. We will
show that the idea of simultaneous binary search from Algo-
rithm 1 can be adapted to solve the Multiple-bit CSL prob-
lem with congestion games (Appendix A), graphical games
(Appendix B), or auctions (Section 4). The adaptation to
congestion games is natural once we construct a new game-
strategy pair that is similar in spirit to the directed prisoner’s
dilemma. However, the adaptation to graphical games and
auctions requires more innovations in algorithm design.

4 Multiple-bit CSL with Auctions
We consider in this section the case of Multiple-bit CSL
with auctions. The auction format we consider is theoreti-
cally well-studied second-price auctions with personalized
reserves (Paes Leme, Pal, and Vassilvitskii 2016), which is
widely used in practice. We first formally define this format.

Definition 4.1. A second-price auction with personalized
reserves G is a tuple (N,v, r) where N is the set of agents,
v = (v1, v2, . . . , vn) is the valuation vector, and r =
(r1, r2, . . . , rn) is the reserve price vector. The auction pro-
ceeds as follows: Each agent i submits a bid σi ∈ R≥0 and
the agent with the highest bid wins the auction with ties bro-
ken at uniform random. If the winner i bids greater than ri,
then the winner gets the item at a price equal to the maxi-
mum between the second highest bid and ri. The item can
be reallocated among [i]S∗ . Otherwise, the item is not allo-
cated.

Our algorithm for the Multiple-bit CSL problem with auc-
tions works in (1+log2 n)(1+c)+1 rounds, where c is size
of the largest coalition in S∗. To introduce the algorithm, we
first define the game-strategy pairs that we will use in the
algorithm, the auction game gadgets, where we will spec-
ify the valuation and reserve prices of every agents in each
partition bucket.
Definition 4.2. Let {X,Y, Z} be a partition of N , i.e.,
X ∩ Y = X ∩ Z = Y ∩ Z = ∅ and X ∪ Y ∪ Z = N . An
auction gadget A(X,Y, Z) is a game-strategy pair (G,Σ)
where G = (N,v, r) is a second-price auction with per-
sonalized reserves, and Σ is a specified bid vector for the
agents, where

vi =

{
1 (i ∈ X)
0 (i ∈ Y)
0 (i ∈ Z),

ri =

{
1 (i ∈ X)
0 (i ∈ Y)
1 (i ∈ Z),

and σi = 0

Note that in the above auction game gadgets, we do not re-
quire each agent to know all the other agents’ valuations so
that the valuation of each agent is still private across strate-
gic agents. Only agents in the same coalition know each
other’s true valuation.
Lemma 4.1. For {X,Y, Z} that is a partition of N , let O =
O(A(X,Y, Z)). For each coalition S ∈ S∗, if S ∩X ̸= ∅
and S ∩ Y ̸= ∅, then, there is exactly one agent i ∈ S ∩
Y with Oi = True and Oj = False for all j ∈ S \ {i}.
Otherwise, Oi = False for all i ∈ S.

Proof. For each coalition S ∈ S∗. We first consider the case
where S ∩ X ̸= ∅ and S ∩ Y ̸= ∅. Let agent i ∈ S ∩ X
and agent j ∈ S ∩ Y . If the coalition follows the speci-
fied strategy profile ΣS , then the item will not be allocated,
so the utility of the agents in S is 0. However, If agent j
raises its bid to σ′

j > 0, then it becomes the winner of
the auction, and the item will be allocated to j with price
max{second highest bid, rj} = 0. The item can then be re-
allocated to agent i, giving utility 1 to the agents in S. Thus,
ΣS is not a joint best response to Σ−S . Moreover, for agents
in S, the only joint best response is to let exactly one agent

in S ∩ Y raise its bid to positive, and the other agents in S
keep their bids at 0. Thus, the observation O is as described
in the lemma.

Otherwise, either S∩X = ∅ or S∩Y = ∅. If S∩X = ∅,
then no one in S has a positive valuation for the item, so
the utility of the agents in S cannot be greater than 0. If
S ∩ Y = ∅, then no one in S has a reserve price that is
smaller than 1, which is the largest possible valuation. Thus,
the utility of the agents in S cannot be greater than 0, either.
In both cases, keeping the bids at 0 is a joint best response to
Σ−S , so the observation O is as described in the lemma.

The auction gadgets are important building blocks for our
algorithm that works in (1 + log2 n)(1 + c) + 1 rounds. To
help demonstrate how they can be used to solve Multiple-bit
CSL, we present a simpler algorithm that works in n − 1
rounds using the auction gadgets below.

Algorithm 2: Iterative Location with Auctions
Input: The number of agents n and the multiple-bit

observation oracle O.
Output: A coalition structure S of the agents.
1 Let T ← N ;
2 Let S ← {{1}, {2}, . . . , {n}};
3 while |T | ≥ 2 do
4 Let i← the first element in T ;
5 while |T | ≥ 2 and i ∈ T do
6 Let X ← {i}, Y ← T \ {i} and

Z ← N \ S;
7 Query A(X,Y, Z) and observe O;
8 if ∃j such that Oj = True then
9 Merge [i]S and [j]S in S;

10 T ← T \ {j};
11 else
12 T ← T \ {i};

13 return S;

To provide some intuitions, consider an agent i ∈ N . If
we want to find another agent in the same coalition as i, we
can query the auction gadgetA({i}, N \{i},∅). According
to Lemma 4.1, if the observation O has Oj = True for some
j ∈ N \{i}, then i and j are in the same coalition under S∗.
Otherwise, i is in a coalition by itself. Then, suppose we
have found an agent j in i’s coalition, and we would like
to find a different agent in that coalition. We can query the
auction gadget A({i}, N \ {i, j}, {j}). By moving agent j
to the set Z, we ensure that j does not have the incentive
to deviate, and either another agent in the same coalition as
i will have Ok = True for some k ∈ N \ {i, j}, or we
can conclude that i and j are in a coalition by themselves.
We can then repeat this process until we have found all the
agents in the same coalition as i. After that, we can move i to
the set Z and proceed with the next agent in N . In this way,
we can recover the coalition structure S∗. Moreover, since
each time we query an auction gadget, we move one agent
to set Z, and the algorithm terminates when |Z| = n− 1, it
uses n− 1 queries in total.

Theorem 4.1. Algorithm 2 solves the Multiple-bit CSL
problem with auctions in n− 1 rounds.

We defer the proof to Appendix C. Other than the auction
gadgets, we will also use another game-strategy pair in the
algorithm. We prove the following lemma about the obser-
vations obtained by querying this game-strategy pair.

Lemma 4.2. Let O = O((N,v = 1, r = 0),Σ = 0),
where 0,1 are vectors consisting purely of 0s and 1s respec-
tively. For each coalition S ∈ S∗, exactly one agent i ∈ S
has Oi = True.

Proof. For each coalition S ∈ S∗, if any agent i in S raises
its bid to positive, then the item will be allocated to i with
price 0, giving utility 1 to the agents in S. Thus, ΣS is not
a joint best response to Σ−S . Moreover, the only joint best
response for agents in S is to let exactly one agent in S raise
its bid to positive, and the other agents in S keep their bids
at 0. The lemma then follows.

Then, we are ready to present our algorithm that works in
(1 + log2 n)(1 + c) + 1 rounds for Multiple-bit CSL with
auctions. The algorithm is shown in Algorithm 3.

Algorithm 3: Bitwise Search with Auctions
Input: The number of agents n and the multiple-bit

observation oracle O.
Output: A coalition structure S of the agents.
1 Query ((N,v = 1, r = 0),Σ = 0) and observe O;
2 Let Tx ← {i | Oi = True} and Ty ← N \ Tx;
3 for b ∈ {0, 1, . . . , ⌊log2 n⌋} do
4 Let X ← {i | i ∈ Tx and

the b-th lowest binary bit of i is 1};
5 Let TFalse ← Ty;
6 repeat
7 Let Y ← TFalse and Z ← N \ (X ∪ Y);
8 Query A(X,Y, Z) and observe O;
9 Let

TTrue ← {i | i ∈ TFalse and Oi = True};
10 TFalse ← TFalse \ TTrue;
11 until TTrue = ∅;
12 Let O(b)

i ← I[i ̸∈ TFalse] for each i ∈ Ty;
13 Let S ← {{1}, {2}, . . . , {n}};
14 for i ∈ Ty do
15 Let j ←

∑⌊log2 n⌋
b=0 2b ·O(b)

i ;
16 Merge [i]S and [j]S in S;
17 return S;

The algorithm starts by querying the game-strategy pair
((N,v = 1, r = 0),Σ = 0) (Line 1). Using the obtained
observation, by Lemma 4.2, the algorithm identifies exactly
one agent in each coalition, groups them into set Tx and the
rest of the agents into set Ty (Lines 2). Essentially, set Tx

contains a set of agents who are definitely not in the same
coalition with each other. Furthermore, for each agent i in
Ty , there is exactly one “teammate” of i in Tx. We denote
the index of this agent as α(i).

1 3 5

2 4 6

Tx

Ty

X

TTrue TFalse

(a) When b = 0

1 3 5

2 6 4

Tx

Ty

X

TTrue TFalse

(b) When b = 1

1 3 5

6 2 4

Tx

Ty

X

TTrue TFalse

(c) When b = 2

Figure 3: Example execution of the bitwise search (Lines 1 to 12) in Algorithm 3 when S∗ = {{1, 4}, {2, 3}, {5, 6}}. The
vertices represent the agents, and the dashed lines represent the sets used in the algorithm. Using the first query, the algorithm
identifies one agent in each coalition and groups them as Tx = {1, 3, 5}. The rest are Ty = {2, 4, 6} (Lines 1 to 2). Then, as
shown above, for each b ∈ {0, 1, 2}, the algorithm picks the set of agents in Tx with the b-th lowest binary bit as 1 as X , and
partitions Ty into TTrue, each of which is cooperating with some agent in X , and TFalse, each of which is not cooperating with
any agent in X (Lines 3 to 12).

An important idea behind Algorithm 3 is bitwise search,
i.e., to determine each binary bit of α(i) separately. To do
this, for each b ∈ {0, 1, . . . , ⌊log2 n⌋}, the algorithm picks
the set of agents in Tx such that the b-th lowest binary bits
of their index are 1 as X (Line 4), and tries to tell which
agents in Ty are in the same coalition as some agent in X by
querying auction gadgets. Intuitively, if we let Y = Ty, Z =
N \(X∪Y) and queryA(X,Y, Z), by Lemma 4.1, for each
coalition that contains an agent in X , one of its members in
Y will decide to deviate. Thus, we can move these agents
to Z like how we did in Algorithm 2, until no agents in Y
decide to deviate. The remaining agents in Y are then the
agents that are not in the same coalition as any agent in X .
The algorithm leverages this idea to determine each binary
bit of α(i) separately, and stores the results in O

(b)
i (Lines

5 to 12). Note that for each b, the algorithm uses at most
1 + c queries, where c is the size of the largest coalition in
S∗. We illustrate the execution of the bitwise search with an
example in Fig. 3.

Finally, the algorithm recovers α(i) for each agent i in Ty

by summing up the values of the binary bits in O
(b)
i (Line

15), and merges i with α(i) accordingly (Line 16).

Theorem 4.2. Algorithm 3 solves the Multiple-bit CSL
problem with auctions in (1 + log2 n)(1 + c) + 1 rounds,
where c is size of the largest coalition in S∗.

Proof. We first show the correctness of the algorithm. By
Lemma 4.2, after Line 2, Tx contains exactly one agent in
each coalition. This means that for each agent i ∈ Ty , there
is exactly one agent j ∈ Tx such that i and j are in the
same coalition. We denote this agent j as α(i). Then, we
will show two claims: (i) after Lines 3 to 12, for each b ∈
{0, 1, . . . , ⌊log2 n⌋} and each i ∈ Ty , O(b)

i = True if and
only if the b-th lowest binary bit of α(i) is 1, and (ii) after
Lines 13 to 16, S = S∗.

For (i), we only need to show that after the repeat loop in
Lines 6 to 11, TFalse contains exactly the agents i ∈ Ty such
that the b-th lowest binary bit of α(i) is 0. If an agent i ∈ Ty

has the b-th lowest binary bit of α(i) as 0, then α(i) ̸∈ X
after Line 4. Thus, by Lemma 4.1, Oi will never be True

on Line 8, and i ∈ TFalse after the repeat loop. If an agent
i ∈ Ty has the b-th lowest binary bit of α(i) as 1, then
α(i) ∈ X after Line 4. By Lemma 4.1, in each iteration
of the repeat loop, one agent j ∈ [i]S∗ ∩ TFalse will have
Oj = True, and will be removed from TFalse. Since the re-
peat loop terminates only when no agent is removed from
TFalse in one iteration, i ̸∈ TFalse after the loop.

For (ii), given each binary bit of α(i), the algorithm com-
putes the index of the agent in α(i) in Ty by summing up
the values of the binary bits on Line 15. Then, the algorithm
merges i with α(i) accordingly on Line 16. The correctness
of the algorithm then follows.

For the complexity, the algorithm uses 1 query on Line 1,
and for each b ∈ {0, 1, . . . , ⌊log2 n⌋}, the algorithm uses at
most 1 + c queries in the repeat loop in Lines 6 to 11. This
shows that the total number of queries used by the algorithm
is at most (1 + log2 n)(1 + c) + 1.

5 Conclusion and Future Work
In this paper, we study the Coalition Structure Learning
(CSL) problem under the multiple-bit observation oracle.
We consider various settings of the type of games that the
algorithm may design, including normal-form games, con-
gestion games, graphical games, and auctions. In each of the
settings, we present an algorithm that learns the coalition
structure with a sublinear number of rounds. We also com-
plement our algorithmic results with lower bounds on the
number of rounds required to learn the coalition structure,
demonstrating their optimality in most of the settings. Com-
pared to the existing work, our results significantly reduce
the number of rounds required to learn the coalition struc-
ture, and greatly improve the potential applicability of the
CSL problem in real-world systems. Regarding CSL, there
are various different settings for future work that are not cov-
ered by this paper. It would be interesting to consider the
CSL problem (i) when the underlying coalition structure is
dynamic, (ii) when the agents are aware of the algorithm and
respond strategically, (iii) when the algorithm can only ob-
serve a subset of the agents in each round, and (iv) when the
observations are noisy or the agents are boundedly rational.

Acknowledgements
This work was supported in part by NSF grant IIS-2046640
(CAREER) and NSF IIS-2200410.

References
Amin, K.; Cummings, R.; Dworkin, L.; Kearns, M.; and
Roth, A. 2015. Online learning and profit maximization
from revealed preferences. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, AAAI’15,
770–776. AAAI Press. ISBN 0262511290.
Balcan, M.-F.; Blum, A.; Haghtalab, N.; and Procaccia,
A. D. 2015. Commitment Without Regrets: Online Learn-
ing in Stackelberg Security Games. In Proceedings of the
Sixteenth ACM Conference on Economics and Computation,
EC ’15, 61–78. New York, NY, USA: Association for Com-
puting Machinery. ISBN 9781450334105.
Balcan, M.-F.; Daniely, A.; Mehta, R.; Urner, R.; and Vazi-
rani, V. V. 2014. Learning Economic Parameters from Re-
vealed Preferences. In Liu, T.-Y.; Qi, Q.; and Ye, Y., eds.,
Web and Internet Economics, 338–353. Cham: Springer In-
ternational Publishing.
Beigman, E.; and Vohra, R. 2006. Learning from revealed
preference. In Proceedings of the 7th ACM Conference on
Electronic Commerce, EC ’06, 36–42. New York, NY, USA:
Association for Computing Machinery. ISBN 1595932364.
Blum, A.; Haghtalab, N.; and Procaccia, A. D. 2014. Learn-
ing Optimal Commitment to Overcome Insecurity. In
Ghahramani, Z.; Welling, M.; Cortes, C.; Lawrence, N.; and
Weinberger, K., eds., Advances in Neural Information Pro-
cessing Systems, volume 27. Curran Associates, Inc.
Bonjour, T.; Aggarwal, V.; and Bhargava, B. 2022. Infor-
mation theoretic approach to detect collusion in multi-agent
games. In Cussens, J.; and Zhang, K., eds., Proceedings of
the Thirty-Eighth Conference on Uncertainty in Artificial In-
telligence, volume 180 of Proceedings of Machine Learning
Research, 223–232. PMLR.
Cesa-Bianchi, N.; and Lugosi, G. 2006. Prediction, Learn-
ing, and Games. Cambridge University Press.
Daskalakis, C.; Fishelson, M.; and Golowich, N. 2021.
Near-optimal no-regret learning in general games. Advances
in Neural Information Processing Systems, 34: 27604–
27616.
De Bruijn, N. G. 1981. Asymptotic methods in analysis, vol-
ume 4. Courier Corporation.
Dowling, J. 2023. How Uber drivers trigger fake surge price
periods when no delays exist. Drive.
EPRS. 2020. The ethics of artificial intelligence: Issues and
initiatives. European Parliament Research Service, Scien-
tific Foresight Unit (STOA), Panel for the Future of Science
and Technology.
Fudenberg, D.; and Levine, D. K. 1998. The Theory of
Learning in Games, volume 1 of MIT Press Books. The
MIT Press.
Haghtalab, N.; Fang, F.; Nguyen, T. H.; Sinha, A.; Procac-
cia, A. D.; and Tambe, M. 2016. Three strategies to success:
learning adversary models in security games. In Proceedings

of the Twenty-Fifth International Joint Conference on Arti-
ficial Intelligence, IJCAI’16, 308–314. AAAI Press. ISBN
9781577357704.
Hamilton, I. A. 2019. Uber Drivers Are Reportedly Collud-
ing to Trigger ‘Surge’ Prices Because They Say the Com-
pany Is Not Paying Them Enough. Business Insider.
Kearns, M.; Littman, M. L.; and Singh, S. 2001. Graphi-
cal Models for Game Theory. In Proceedings of the 17th
Conference in Uncertainty in Artificial, Intelligence, 2001,
253–260.
Kuleshov, V.; and Schrijvers, O. 2015. Inverse Game The-
ory: Learning Utilities in Succinct Games. In Markakis, E.;
and Schäfer, G., eds., Web and Internet Economics, 413–
427. Berlin, Heidelberg: Springer Berlin Heidelberg.
Letchford, J.; Conitzer, V.; and Munagala, K. 2009. Learn-
ing and Approximating the Optimal Strategy to Commit
To. In Mavronicolas, M.; and Papadopoulou, V. G., eds.,
Algorithmic Game Theory, 250–262. Berlin, Heidelberg:
Springer Berlin Heidelberg.
Ling, C. K.; Fang, F.; and Kolter, J. Z. 2018. What Game Are
We Playing? End-to-end Learning in Normal and Extensive
Form Games. In Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-18,
396–402. International Joint Conferences on Artificial Intel-
ligence Organization.
Mazrooei, P.; Archibald, C.; and Bowling, M. 2013. Au-
tomating Collusion Detection in Sequential Games. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
27(1): 675–682.
Milgrom, P. R. 2004. Putting auction theory to work. Cam-
bridge University Press.
Paes Leme, R.; Pal, M.; and Vassilvitskii, S. 2016. A field
guide to personalized reserve prices. In Proceedings of the
25th international conference on world wide web, 1093–
1102.
Qu, A.; Tang, Y.; and Ma, W. 2023. Adversarial Attacks on
Deep Reinforcement Learning-based Traffic Signal Control
Systems with Colluding Vehicles. ACM Transactions on In-
telligent Systems and Technology, 14(6): 1–22.
Rosenthal, R. W. 1973. A class of games possessing pure-
strategy Nash equilibria. International Journal of Game
Theory, 2: 65–67.
Roth, A.; Ullman, J.; and Wu, Z. S. 2016. Watch and
learn: optimizing from revealed preferences feedback. In
Proceedings of the Forty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’16, 949–962. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450341325.
Sweeney, S. 2019. Uber, Lyft drivers manipulate fares at
Reagan National causing artificial price surges. WJLA.
Waugh, K.; Ziebart, B. D.; and Bagnell, J. A. 2011. Com-
putational rationalization: the inverse equilibrium prob-
lem. In Proceedings of the 28th International Confer-
ence on International Conference on Machine Learning,
ICML’11, 1169–1176. Madison, WI, USA: Omnipress.
ISBN 9781450306195.

Wikipedia. 2024. Libor scandal. https://en.wikipedia.org/
wiki/Libor scandal. Accessed: 2024-08-11.
Wu, J.; Shen, W.; Fang, F.; and Xu, H. 2022. Inverse Game
Theory for Stackelberg Games: the Blessing of Bounded Ra-
tionality. Advances in Neural Information Processing Sys-
tems, 35: 32186–32198.
Xu, Y. E.; Ling, C. K.; and Fang, F. 2024. Learning Coalition
Structures with Games. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 38, 9944–9951.
Zadimoghaddam, M.; and Roth, A. 2012. Efficiently Learn-
ing from Revealed Preference. In Goldberg, P. W., ed., Inter-
net and Network Economics, 114–127. Berlin, Heidelberg:
Springer Berlin Heidelberg.

A Multiple-bit CSL with Congestion Games
To state our result for congestion games, we first recall the
definition of a congestion game.
Definition A.1 ((Rosenthal 1973)). A congestion game G
is a tuple (N,R, (Ai)i∈N , (ci)r∈R) where N is the set of
agents, R is the set of resources, Ai ⊆ 2R \ {∅} is the
strategy space of agent i, and cr : N → R is the cost
function of resource r. For a strategy profile Σ = (σi)i∈N

where σi ∈ Ai, the utility of agent i is given by ui(Σ) =
−
∑

r∈σi
cr(|{j ∈ N | r ∈ σj}|).

Clearly, a directed prisoner’s dilemma is not a conges-
tion game, so we cannot directly apply Algorithm 1 to solve
Multiple-bit CSL with congestion games. However, as we
will show in this subsection, we can design another type of
game-strategy pair, directed Braess’s paradox, which is a
congestion game, and functions similarly to directed pris-
oner’s dilemmas in the context of Multiple-bit CSL. We will
then show that using directed Braess’s paradoxes, we can
solve Multiple-bit CSL with congestion games in log2 n+2
rounds with an algorithm similar to Algorithm 1.
Definition A.2. For i ∈ N, j ∈ N , a directed Braess’s
paradox B(i, j) is a game-strategy pair (G,Σ). Here, G is
a congestion game (N,R, (Ai)i∈N , (ci)r∈R) where R =
{r1, r2, r3}. The strategy spaces of agent i and j are {{r1}}
and {{r2}, {r1, r3}} respectively, and the strategy spaces
for all other agents are {∅}. The cost functions are cr1(x) =
x, cr2(x) = 2.5 and cr3(x) = 0 for all x ∈ N. The strategy
profile Σ is such that σi = {r1}, σj = {r1, r3} and σk = ∅
for all k ∈ N \ {i, j}.

We illustrate the definition of directed Braess’s paradox in
Fig. 4.

Si

Sj

T

c(x) = 2.5

c(x) = x

c(x) = 0

Figure 4: Illustration of the directed Braess’s paradox
B(i, j). Agent i needs to choose a path from Si to T and
agent j needs to choose a path from Sj to T . The cost func-
tions are indicated on the edges.

Lemma A.1. Let i, j be two agents in N and O =
O(B(i, j)). Then, Oj = True if and only if agent i and agent
j are in the same coalition under S∗. Moreover, Ok = False
for k ∈ N \ {j}.

Proof. If agent i and agent j are in the same coalition under
S∗, then choosing {r2} is a dominant strategy for agent j’s
coalition. Otherwise, choosing {r1, r3} is a dominant strat-
egy. Therefore, Oj = True if and only if agent i and agent
j are in the same coalition under S∗. Moreover, since all
agents other than j only have one choice (either {r1} or
{∅}), Ok = False for k ∈ N \ {j}.

Lemma A.1 shows that directed Braess’s paradoxes func-
tion just like directed prisoner’s dilemmas in Multiple-bit

CSL. With an argument similar to the proof from Lemma 3.1
to Lemma 3.2, we can also show the following corollary
about the product of multiple directed Braess’s paradoxes.

Corollary A.2. Let {(ix, jx) | x ∈ {1, 2, . . . , k}} be k pairs
of agents and O = O(

∏k
x=1 B(ix, jx)). Then, Oj = True if

and only if there exists x ∈ {1, 2, . . . , k} such that jx = j
and ix ∈ [j]S∗ .

To use the product of multiple directed Braess’s paradoxes
in an algorithm to solve Multiple-bit CSL with congestion
games, we also need to show that it is still a congestion
game. We will show that congestion games are closed un-
der the product operation in the following lemma.

Lemma A.3. Let (G1,Σ1), (G2,Σ2) be two game-strategy
pairs and let (Gp,Σp) = (G1,Σ1) × (G2,Σ2). If G1 and G2
are both congestion games on N , then Gp is also a conges-
tion game on N .

Proof. Let G1 = (N,R1, (A1,i)i∈N , (c1,i)r∈R1
) and G2 =

(N,R2, (A2,i)i∈N , (c2,i)r∈R2
). We will write Gp as a con-

gestion game. According to Definition 3.3, in Gp, the strat-
egy space of agent i is Ai = A1,i × A2,i. Moreover, given
a strategy profile Σ = (σ1,i, σ2,i)i∈N , the utility of agent
i is given by ui(Σ) = −

∑
r∈σ1,i

c1,r(|{j ∈ N | r ∈
σ1,j}|) −

∑
r∈σ2,i

c2,r(|{j ∈ N | r ∈ σ2,j}|). This shows
that Gp = (N, (R1, R2), (Ai)i∈N , ((c1,i)r∈R1 , (c2,i)r∈R2))
is a congestion game on N .

With Corollary A.2 and Lemma A.3, we solve Multiple-
bit CSL with congestion games just like we did with normal-
form games in Algorithm 1. The only difference is that we
query directed Braess’s paradoxes instead of directed pris-
oner’s dilemmas. We present the algorithm below.

Algorithm 4: Simultaneous Binary Search with
Congestion Games
Input: The number of agents n and the multiple-bit

observation oracle O.
Output: A coalition structure S of the agents.
1 Query

∏
i∈N,j∈N,i<j B(i, j) and observe O;

2 Let Tj ← {1, 2, . . . , j − 1} if Oj = True else ∅
for each j ∈ N ;

3 while ∃j ∈ N such that |Tj | ≥ 2 do
4 Let Lj ← {the smallest ⌊ |Tj |

2 ⌋ elements in Tj}
for each j ∈ N ;

5 Let Rj ← Tj \ Lj for each j ∈ N ;
6 Query

∏
j∈N,i∈Lj

B(i, j) and observe O;
7 Let Tj ← Lj if Oj = True else Rj

for each j ∈ N ;
8 Let S ← {{1}, {2}, . . . , {n}};
9 for j ∈ N such that |Tj | ≠ ∅ do

10 Let i← the only element in Tj ;
11 Merge [i]S and [j]S in S;
12 return S;

Theorem A.1. Algorithm 4 solves Multiple-bit CSL with
congestion games in log2 n+ 2 rounds.

Proof. The proof is almost identical to the proof of Theo-
rem 3.1. We first show the correctness of the algorithm. To
do this, we will show three claims: (i) after Lines 1 to 7, for
each j ∈ N , if j is the agent with the smallest index in [j]S∗ ,
Tj = ∅, otherwise, Tj contains only the smallest index of
the agents in [j]S∗ ; (ii) after Lines 8 to 11, S = S∗; (iii) the
games queried in the algorithm are congestion games. (iii) is
implied by Lemma A.3, so we only need to show (i) and (ii).

For (i), if j is the agent with the smallest index in [j]S∗ ,
then by Corollary A.2, Oj = False, and Tj = ∅ on Line
2. Throughout the algorithm, Tj remains ∅. Otherwise, Tj

contains the smallest index of the agents in [j]S∗ after Line
2. In the while loop, Tj is updated to Lj if Oj = True, and
to Rj otherwise. Since Lj contains the smallest ⌊|Tj |/2⌋ el-
ements in Tj , by Corollary A.2, Oj = True if and only if the
smallest index of the agents in [j]S∗ is in Lj . Therefore, after
one iteration of the loop, Tj still contains only the smallest
index of the agents in [j]S∗ , while the size of Tj is halved.
The loop terminates after |Tj | = 1, and Tj contains only the
smallest index of the agents in [j]S∗ .

For (ii), since every agent j is either the agent with the
smallest index in [j]S∗ or merged with that agent, each coali-
tion is merged in S after Lines 8 to 11. Thus S becomes the
same as S∗.

Next, we show the complexity of the algorithm. The while
loop in Lines 3 to 7 runs at most ⌈log2 n⌉ times, and each
iteration requires 1 query. Together with the query on Line
1, the total number of queries is at most ⌈log2 n⌉ + 1 ≤
log2 n+ 2.

B Multiple-bit CSL with Graphical Games
We then proceed to the case of Multiple-bit CSL with graph-
ical games. Recall that in a graphical game (Kearns, Littman,
and Singh 2001), each agent i is associated with a vertex in
an undirected graph G. We use Ni ⊆ N to denote the set of
neighbors of agent i in G, including agent i itself.

Definition B.1. A graphical game G is a tuple
(N,G, (Ai)i∈N , (Mi)i∈N) where N is the set of agents, G
is an undirected graph, Ai is the strategy space of agent
i, and Mi :

∏
j∈Ni

Aj → R is the local game matrix of
agent i. For a strategy profile Σ = (σi)i∈N where σi ∈ Ai,
the utility of agent i is given by ui(Σ) = Mi(ΣNi

), where
ΣNi

= (σj)j∈Ni
consists only of the strategies of agents

in Ni. Here, Ni denotes the set of neighbors of agent i in
undirected graph G.

If we let the undirected graph G be a complete graph,
then we recover the normal-form game setting. However,
the reason why we consider Multiple-bit CSL with graph-
ical games is that graphical games are compact representa-
tions of normal-form games. When the degree of each ver-
tex in the graph is small, the graphical game representa-
tion is far succincter than the normal-form game represen-
tation. Therefore, we consider in this section the case where
the algorithm can only design degree-d graphical games,
where the degree of each vertex in the graph is at most d.

In this case, we will need at least ⌈n−1
d ⌉ rounds to solve the

Multiple-bit CSL problem. To prove this claim formally, we
first show with the following lemma that in some cases, the
observations reveal no information about whether a certain
pair of agents are in the same coalition under S∗.

Lemma B.1. Let i, j be two agents in N and let S0 =
{{1}, {2}, . . . , {n}},S1 = S0∪{{i, j}}\{{i}, {j}} be two
coalition structures. If we query the oracle for a graphical
game G where edge (i, j) is not in the undirected graph G,
then the observation reveals no information about whether
S∗ = S0 or S∗ = S1.

Proof. Let G = (N,G, (Ai)i∈N , (Mi)i∈N) and let Σ =
(σi)i∈N be the specified strategy profile in G. Consider
agent i’s deviation decision Oi(G,Σ). Let BRi,S0

({i},Σ)
and BRj,S0

({j},Σ) be the set of best responses of coalitions
{i} and {j} to Σ−i and Σ−j if S∗ = S0 respectively. Since
the local game matrix Mi only depends on ΣNi

̸∋ j, no mat-
ter what strategy agent j plays, the best response of {i} to
Σ−i is the same. Therefore, the set of best responses of coali-
tion {i, j} if S∗ = S1 is BRi,S0({i},Σ)× BRj,S0({j},Σ).
This shows that whether S∗ = S0 or S∗ = S1 does not af-
fect the deviation decision of agent i. The same argument
applies to agent j.

Theorem B.1. Any algorithm that solves the Multiple-bit
CSL problem with degree-d graphical games requires at
least ⌈n−1

d ⌉ rounds of interactions with the agents in the
worst case.

Proof. Suppose that the algorithm has queried
the observation oracle k times with game-strategy
pairs {(G1,Σ1), (G2,Σ2), . . . , (Gk,Σk)}, where
Gi = (N,Gi, (Ai)i∈N , (Mi)i∈N) is a degree-d graph-
ical game. According to Lemma B.1, if the observations
always behave as if S∗ = {{1}, {2}, . . . , {n}}, then the
algorithm cannot finalize the answer until for each pair
of agents i, j, the algorithm has queried the oracle for a
graphical game where edge (i, j) is in the undirected graph.
Since the degree of each vertex in the graph is at most d,
the algorithm needs to query the oracle for at least ⌈n−1

d ⌉
different graphical games to include all edges adjacent to
vertex 1. The theorem follows.

Then, we present an algorithm that solves the Multiple-
bit CSL problem with degree-d graphical games in 2n

d +
2 log2 d + 1 rounds of interactions with the agents in the
worst case. Note that d ≤ n, given the lower bounds in The-
orems 2.1 and B.1, the algorithm is optimal up to a constant
factor.

The algorithm uses the product of multiple directed pris-
oner’s dilemmas to query the observation oracle. We will
first show that such a product can be represented as a degree-
d graphical game.

Lemma B.2. Let {(ix, jx) | x ∈ {1, 2, . . . , k}} be k

pairs of agents and (Gp,Σp) =
∏k

x=1 P(ix, jx). Then,
Gp can be written as a degree-d graphical game, where
d = max{

∑k
x=1(I[i = ix] + I[i = jx]) | i ∈ N}, i.e., the

maximum number of occurrences of any agent in the pairs.

Proof. For two agents i ∈ N, j ∈ N , if (i, j) does not oc-
cur in any of the pairs, then, according to Definition 3.2,
the utility of agent i does not depend on agent j’s strat-
egy in any of the directed prisoner’s dilemmas P(ix, jx) |
x ∈ {1, 2, . . . , k}. Since for each agent, the utility in the
product game is the sum of the utilities in the factor games,
the utility of agent i in the product game also does not de-
pend on agent j’s strategy. This shows that Gp can be repre-
sented as a graphical game with the graph’s edge set being
{(ix, jx) | x ∈ {1, 2, . . . , k}}. The lemma then follows.

We then present the algorithm as Algorithm 5.

Algorithm 5: Block Decomposition and Simulta-
neous Binary Search with Graphical Games
Input: The number of agents n, the degree limit d and

the multiple-bit observation oracle O.
Output: A coalition structure S of the agents.
1 Let size← ⌊d2⌋ and cnt← ⌈ n

size⌉;
2 Let belongj ← ⌊ j−1

size⌋ for each j ∈ N ;
3 for δ ∈ {0, 1, . . . , cnt− 1} do
4 Query

∏
i∈N,j∈N,i<j,belongj−belongi=δ P(i, j)

and observe O(δ);

5 Let Sj ← {δ | O(δ)
j = True} for each j ∈ N ;

6 Let δj ← −1 if Sj = ∅ else min(Sj)
for each j ∈ N ;

7 Let Tj ← {i | i < j, belongj − belongi =
δj} if δj ̸= −1 else ∅ for each j ∈ N ;

8 while ∃j ∈ N such that δj = 0, |Tj | ≥ 2 do
9 Let Lj ← {the smallest ⌊ |Tj |

2 ⌋ elements in Tj}
for each j ∈ N, δj = 0;

10 Let Rj ← Tj \ Lj for each j ∈ N, δj = 0;
11 Query

∏
j∈N,δj=0,i∈Rj

P(i, j) and observe O;
12 Let Tj ← Rj if Oj = True else Lj

for each j ∈ N, δj = 0;
13 while ∃j ∈ N such that δj ≥ 1, |Tj | ≥ 2 do
14 Let Lj ← {the smallest ⌊ |Tj |

2 ⌋ elements in Tj}
for each j ∈ N, δj ≥ 1;

15 Let Rj ← Tj \ Lj for each j ∈ N, δj ≥ 1;
16 Query

∏
j∈N,δj≥1,i∈Rj

P(i, j) and observe O;
17 Let Tj ← Rj if Oj = True else Lj

for each j ∈ N, δj ≥ 1;
18 Let S ← {{1}, {2}, . . . , {n}};
19 for j ∈ N such that |Tj | ≠ ∅ do
20 Let i← the only element in Tj ;
21 Merge [i]S and [j]S in S;
22 return S;

Compared with the normal-form game setting, with
degree-d graphical games, the algorithm can only query
products of multiple directed prisoner’s dilemmas subject to
the degree constraint d as described in Lemma B.2. To com-
ply with this constraint, Algorithm 5 introduces an important
idea, block decomposition, i.e., to partition the agents into

blocks of size ⌊d2⌋ and choose pairs to query according to
the decomposition (Lines 1 to 2). As long as for each query,
each agent is involved in directed prisoner’s dilemmas with
at most two blocks of agents, the constraint is not violated.

The general idea of Algorithm 5 is to find for each agent j,
the “predecessor” of j, i.e., the agent with the largest index
that is smaller than j in [j]S∗ . To do this, the algorithm takes
a two-step approach. First, the algorithm tries to find which
block the predecessor of each agent belongs to (Lines 3 to
6). We illustrate this process with an example in Fig. 5. The
algorithm enumerates block index gap δ and constructs one
query for each δ. The query for a given δ includes P(i, j)
of all pairs of agents i, j such that the difference between
the block indices they belong to, i.e., belongj − belongi, is
δ (Lines 3 to 4). In this way, an agent j will be involved
in directed prisoner’s dilemmas with agents in at most two
blocks, block belongj + δ and block belongj − δ in one
query. Moreover, after the enumeration, since the algorithm
observes for each agent i and each block before belongi,
whether there is an agent in the same coalition of i in that
block, it gets to determine the block index of each agent’s
predecessor or conclude that it has no predecessors (Lines 5
to 6).

Then, the algorithm carries out a simultaneous binary
search to find the predecessor of each agent (Lines 7 to 17).
The algorithm first deals with the agents whose predecessors
are in the same block as themselves (Lines 7 to 12). In this
process, each agent j will be involved in games only within
its own block in the queries. Next, the algorithm deals with
the agents whose predecessors are in a different block (Lines
13 to 17). In this process, each agent j will be involved in
games with its predecessor’s block, and agents outside block
belongj whose predecessors are in block belongj . The num-
ber of such agents is also at most twice the block size.

Finally, the algorithm merges each agent with its prede-
cessor (Lines 18 to 21).

Theorem B.2. Let d ≥ 2 be an even number, Algorithm 5
solves the Multiple-bit CSL problem with degree-d graphical
games in 2n

d + 2 log2 d + 1 rounds of interactions with the
agents in the worst case.

Proof. We first show the correctness of the algorithm. To
do this, we will show four claims: (i) after Lines 1 to 6, for
each j ∈ N , if j is the agent with the smallest index in [j]S∗ ,
δj = −1; otherwise, let i be the largest index in [j]S∗ that is
smaller than j, δj = belongj − belongi; (ii) after Lines 7 to
17, for each j ∈ N , if j is the agent with the smallest index
in [j]S∗ , Tj = ∅; otherwise, Tj contains only the largest
index in [j]S∗ that is smaller than j; (iii) after Lines 8 to 21,
S = S∗; (iv) the games queried in Lines 4, 11, and 16 are
degree-d graphical games.

For (i), if j is the agent with the smallest index in
[j]S∗ , then by Lemma 3.2, O

(δ)
j = False, for all δ ∈

{0, 1, . . . , cnt − 1} on Line 4. As a result, Sj = ∅ on
Line 5, and δj = −1 on Line 6. Otherwise, let i be
the largest index in [j]S∗ that is smaller than j. Then, by
Lemma 3.2, O(δ)

j = True for δ = belongj − belongi on
Line 4 since P(i, j) is included as a factor game. More-

1
3

5

2
4

6

Block 0

Block 1

Block 2

(a) When δ = 0

1
3

5

2
4

6

Block 0

Block 1

Block 2

(b) When δ = 1

1
3

5

2
4

6

Block 0

Block 1

Block 2

(c) When δ = 2

Figure 5: Example execution of Lines 1 to 6 in Algorithm 5 when n = 6 and size = 2. The vertices represent the agents
and the edges represent the directed prisoner’s dilemmas that the algorithm queries for each δ = {0, 1, 2}. The algorithm first
partitions the agents into cnt = ⌈ n

size⌉ = 3 blocks, each containing at most size = 2 agents (Lines 1 to 2). Then, for each
δ = {0, 1, 2}, the algorithm queries the oracle for the directed prisoner’s dilemmas that correspond to the edges shown in the
figure (Lines 3 to 4). Using the observations, the algorithm then determines for each agent j, δj = belongj − belongi, where i
is j’s predecessor in [j]S∗ (Lines 5 to 6). Note that in each query, any agent j is involved in at most 2size ≤ d games.

over, O(δ)
j = False for all δ < belongj − belongi since i

is the largest index in [j]S∗ that is smaller than j. Therefore,
belongj − belongi becomes the minimum of Sj on Line 5,
and thus δj = belongj − belongi on Line 6.

For (ii), if j is the agent with the smallest index in [j]S∗ ,
then Tj = ∅ on Line 7. Throughout the algorithm, Tj re-
mains ∅. Otherwise, Tj contains the largest index, i, in [j]S∗

that is smaller than j after Line 7. Depending on whether
belongj − belongi = 0 or not, either Lines 8 to 12 or
Lines 13 to 17 will carry out a binary search to find this
index i. Note that in the while loop, Tj is updated to Rj

if Oj = True, and to Lj otherwise. Since Rj contains the
largest ⌈|Tj |/2⌉ elements in Tj , by Lemma 3.2, Oj = True
if and only if the largest index i in [j]S∗ that is smaller than
j is in Rj . Thus, the binary search will find this index i and
end up with Tj = {i}.

For (iii), since every agent j is either the agent with the
smallest index in [j]S∗ or merged with its predecessor (the
agent with the largest index that is smaller than j) in [j]S∗ ,
each coalition is merged in S after Lines 18 to 21. Thus S
becomes the same as S∗.

For (iv), consider an agent j. In the game queried on line
4, agent j is involved in at most 2size ≤ d factor games with
agents {i | |belongj−belongi| = δ}; in the game queried on
line 11, agent j is involved in at most size ≤ d factor games
with agents {i | belongi = belongj}; in the game queried
on line 16, agent j is involved in at most 2size ≤ d factor
games with agents {i | i < j, belongj−belongi = δj}∪{i |
i > j, δi ≥ 1, belongi − belongj = δi}. Therefore, the
games queried in Lines 4, 11, and 16 are degree-d graphical
games by Lemma B.2.

Next, we show the complexity of the algorithm. The for
loop in Lines 3 to 4 requires cnt = ⌈ n

size⌉ = ⌈
2n
d ⌉ queries,

and the while loops in Lines 8 to 12 and Lines 13 to 17
require at most ⌈log2 size⌉ = ⌈log2 d⌉ − 1 queries each.
Therefore, the total number of queries is at most ⌈ 2nd ⌉ +
2⌈log2 d⌉−2 ≤ 2n

d +2 log2 d+1. This completes the proof.

C Omitted Proofs
C.1 Proof of Theorem 4.1
Theorem 4.1. Algorithm 2 solves the Multiple-bit CSL
problem with auctions in n− 1 rounds.

Proof. We first show the correctness of the algorithm. Con-
sider the if statement on Line 8, if there exists j such that
Oj = True, then by Lemma 4.1, exactly one agent j in T
has Oj = True, and agents i and j are in the same coalition
under S∗. The algorithm then merges [i]S and [j]S in S, and
removes j from T . Otherwise, by Lemma 4.1, no agent in
T is in [i]S∗ . The algorithm then removes i from T . There-
fore, the inner while loop on Lines 5 to 12 finalizes agent
i’s coalition in S correctly, and removes the whole coalition
from T . The correctness of the algorithm then follows.

For the complexity, the algorithm starts with T = N , and
after each query on Line 7, it removes one agent from T .
Since the algorithm terminates when |T | = 1, it uses n − 1
queries in total.

