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Abstract

Community engagement plays a critical role in anti-poaching
efforts, yet existing mathematical models aimed at enhanc-
ing this engagement often overlook direct participation by
community members as alternative patrollers. Unlike profes-
sional rangers, community members typically lack flexibility
and experience, resulting in new challenges in optimizing pa-
trol resource allocation. To address this gap, we propose a
novel game-theoretic model for community-participated pa-
trol, where a conservation agency strategically deploys both
professional rangers and community members to safeguard
wildlife against a best-responding poacher. In addition to a
mixed-integer linear program formulation, we introduce a
Two-Dimensional Binary Search algorithm and a novel Hy-
brid Waterfilling algorithm to efficiently solve the game in
polynomial time. Through extensive experiments and a de-
tailed case study focused on a protected tiger habitat in North-
east China, we demonstrate the effectiveness of our algo-
rithms and the practical applicability of our model.

Code — https://github.com/YvonneWu10/Community-
Participated-Patrol

1 Introduction
Community engagement has become increasingly recog-
nized as a vital element in the fight against wildlife poach-
ing (Gill et al. 2014; Nubani et al. 2023; Wilson-Holt
and Roe 2021). By involving local communities directly
in conservation efforts, agencies can leverage local knowl-
edge and foster a sense of ownership over the protection
of natural resources. Among various strategies, community-
participated patrols, where community members actively en-
gage in monitoring and protecting wildlife, have gained pop-
ularity as an effective means of enhancing anti-poaching ini-
tiatives (Massé et al. 2017; Danoff-Burg and Ocañas 2022).
These patrols not only supplement the efforts of professional
rangers but also strengthen the ties between conservation
agencies and the communities they serve.

Despite the rise of community-participated patrols, exist-
ing game-theoretic models for anti-poaching resource allo-
cation have largely overlooked the direct role of commu-
nity members as patrollers. Most models focus on indirect
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engagement, like community reporting poacher locations to
rangers (Sjöstedt et al. 2022; Linkie et al. 2015; Huang et al.
2020; Shen et al. 2020, 2024), without addressing the com-
plexities of deploying community members in the field. Dif-
ferences in flexibility and experience between community
members and professional rangers pose unique challenges
in optimizing patrols, which remain underexplored. For ex-
ample, in Northeast China, each community member is as-
signed to a 2km by 2km area and will patrol the same area at
least twice a week throughout the patrol season. In contrast,
professional rangers cover multiple areas every week, with
the choices of areas changing weekly.

To address this gap, we propose a novel game-theoretic
model that explicitly incorporates community-participated
patrols into the strategic allocation of anti-poaching re-
sources. Our model enables conservation agencies to assign
both professional rangers and community members (or vil-
lagers) to multiple target areas, accounting for the poacher’s
choice of the target with the highest expected utility after
observing the patrol strategy. Rangers follow a mixed strat-
egy, with assignments based on a probability distribution
over targets. The randomness in this strategy makes it harder
for poachers to avoid detection. In contrast, villagers, due to
limited flexibility, follow a deterministic strategy, with each
assigned to a specific target.

To solve the game, we first present a mathematical
program-based solution. The deterministic allocation for
villagers introduces integer variables, resulting in an NP-
hard mixed-integer linear program. We then design two
polynomial-time algorithms that leverage key properties of
the problem. The first, the Two-Dimensional Binary Search
algorithm, is an approximation method that performs binary
searches on both the number of villagers and the number of
rangers assigned to the poacher’s chosen target. The second,
the Hybrid Waterfilling algorithm, provides an exact solu-
tion by combining the ”water-filling” idea (Kiekintveld et al.
2009) from security games with binary search and iterative
target swapping for villagers. We validate our approach’s ef-
fectiveness and computational efficiency through synthetic
data experiments. We further run an extensive case study on
a protected tiger habitat in Northeast China with real-world
data, demonstrating the potential of our model in real-world
conservation scenarios. We have presented the model to con-
servation agencies in 13 countries and we plan to work with



the local forest bureau in Northeast China to adjust future
patrol resource allocation based on the case study results.

2 Related Work
Many works on patrol allocation in security and environ-
mental sustainability domains consider homogeneous pa-
trol resources (Fang, Stone, and Tambe 2015; Johnson,
Fang, and Tambe 2012). For heterogeneous patrol resources,
there have been several works studying the synergy between
rangers and mobile sensors for anti-poaching (Basilico et al.
2017; Xu et al. 2018; Bondi et al. 2020). The sensors can
be used for detecting poaching and informing patrollers, but
can not stop the poachers themselves. The sensors can also
signal the poachers that rangers are coming to deter them
from poaching. Therefore, these works pay attention to the
design of the joint allocation of rangers and sensors to raise
the probability that the rangers come when poaching is de-
tected and the strategic signaling scheme of the mobile sen-
sors to better deter poachers. Unlike sensors, villagers can
stop poaching by removing the snares but can only follow
deterministic allocation. Therefore, the main technical focus
of our work is the combination of deterministic allocation of
villagers and random allocation of rangers.

In addition, Mc Carthy et al. (2016) proposes a model for
the optimal selection and deployment of security resource
teams with varying effectiveness and costs. The model is
extended in McCARTHY et al. (2018), which considers the
inflexibility of resources that defenders are only allowed to
be distributed to a set of targets in given periods, resulting in
an NP-Hard problem. In contrast, we specify the inflexibil-
ity that villagers can not be allocated to different targets and
provide a polynomial-time algorithm.

Coordinating multiple defenders is widely studied in se-
curity domains (Mutzari, Gan, and Kraus 2021; Castiglioni,
Marchesi, and Gatti 2021; Gutierrez et al. 2023). These
works usually consider that different defenders have differ-
ent objectives and focus on the design of stable agreements
among defenders. In our case, we view the rangers and vil-
lagers as being fully cooperative.

The idea of “water-filling” has been used in the design
of algorithms for solving mathematical models for secu-
rity problems (Kiekintveld et al. 2009; Nguyen et al. 2015;
Nguyen and Xu 2019; Gan et al. 2019). By treating each tar-
get as a bucket and patrol resources as water, the algorithm
fills water to the bucket with the minimum water level. A key
factor in using the water-filling algorithm is that the patrol
resources can be divided and allocated to multiple targets at
will so that they can be treated as water. However, the vil-
lagers in our problem can not be distributed to different tar-
gets, which breaks this property. Extending the algorithm to
handle the villagers is a highly non-trivial task, and we de-
sign our Hybrid Waterfilling Algorithm by combining water
filling with binary search and iterative swapping to address
the challenge as detailed in later sections.

3 Problem Formulation
We propose and study the Resources Allocation of Com-
munity Participated Patrol (RACPP) problem. This prob-

lem formulation builds upon the Stackleberg Security Game
(SSG) formulation (Tambe 2011) where a defender allocates
patrol resources to protect a set of targets against a best-
responding attacker. However, the key difference in RACPP
is that two types of patrol resources co-exist: professional
rangers and community members who are less flexible and
effective. In the anti-poaching domain, community mem-
bers are from nearby villages and towns who are less ex-
perienced in finding poaching tools during patrols and are
often only willing to go to a fixed area (i.e., one target) for
patrols throughout the patrol season as it is easier for them
to plan their other daily work. For expository purposes, we
will refer to them as villagers in the rest of the paper.

More concretely, a defender can allocate a group of
rp rangers and rv villagers to protect n targets T =
{0, 1, . . . , n − 1}. A ranger can distribute their1 efforts
among multiple targets, while a villager can only be al-
located to a single target. We denote the defenders’ de-
fensive strategy profile as a tuple (p,v), where p =
(p0, p1, . . . , pn−1) and v = (v0, v1, . . . , vn−1). Here, pi ∈
R≥0 is the amount of rangers’ effort distributed to target i
and vi ∈ N is the number of villagers patrolling target i. A
valid defender strategy profile must satisfy∑

i∈T pi ≤ rp,
∑

i∈T vi ≤ rv. (1)

The attacker will select a target i ∈ T to attack to maxi-
mize their expected utility after observing the defender strat-
egy. The probability of successfully attacking the target de-
pends on the coverage of that target provided by the de-
fender. Specifically, let the defense effectiveness of one unit
of ranger and one villager be ep and ev, respectively. The
total coverage on target i is

ci = min(ep · pi + ev · vi, 1). (2)

We use the coverage vector c = (c0, c1, . . . , cn−1) to de-
note the coverage on all targets. If target i is attacked, the
probability of successfully defending the target is ci. The
attacker and defender receive rewards and penalties based
on the outcome of the attack. If target i is successfully de-
fended, the defender receives reward Rd

i and the attacker re-
ceives penalty P a

i . Otherwise, the defender receives penalty
P d
i and the attacker receives reward Ra

i . Here, we assume
Rd

i ≥ 0 ≥ P d
i and Ra

i ≥ 0 ≥ P a
i . Then, the expected utility

of defenders and the attacker are respectively

Ud
i = Rd

i · ci + P d
i · (1− ci),

Ua
i = Ra

i · (1− ci) + P a
i · ci.

(3)

The attacker always chooses to attack the target that max-
imizes their expected utility. If there are multiple targets that
maximize the attacker’s expected utility, the attacker will
choose the one that maximizes the defender’s expected util-
ity following the standard SSG model (Tambe 2011). Thus,
given the defender strategy profile (p,v), the attacker’s re-
sponse is fixed. We can then define the defenders’ expected
utility as a function of the defender strategy profile, u(p,v).
The defenders’ goal is to maximize their expected utility by
adjusting their defensive strategy (p,v) as the attacker se-
lects target i to attack with best response.

1We use their instead of his or her in this paper.



Definition 3.1. An input instance of the RACPP is a tuple
I = (n, rp, rv, ep, ev,Rd,Pd,Ra,Pa).

4 Algorithms for RACPP
In this section, we will present our algorithms to solve the
RACPP problem. First, in Section 4.1, we show that the
RACPP problem can be formulated as a mixed-integer lin-
ear program (MILP). This MILP is easy to understand, but
its runtime is exponential in the worst case. We then show in
Section 4.2 our Two-Dimensional Binary Search algorithm
which solves the RACPP problem to any given accuracy ε in
O(n2 log M

ε ), where M is the maximum absolute value of
the reward and penalties. Finally, in Section 4.3, we present
an exact algorithm named Hybrid Waterfilling algorithm that
solves RACPP precisely in O(n4 log n).

4.1 Mixed-Integer Linear Program Solution
The RACPP problem is a Stackelberg game (Stackelberg
1934), where the defender is the leader and the attacker is
the follower. Suppose we already know that target i∗ is the
target to be attacked in equilibrium. To ensure target i∗ is
the attacker’s best response, we need Ua

i∗ ≥ Ua
i ,∀i ∈ T

(Conitzer and Sandholm 2006), and we would like to maxi-
mize the defender utility Ud

i∗ subjected to (1), (2) and (3). If
we consider the defender strategy profile (p,v) as a set of
variables, then, the RACPP problem can be formulated as an
optimization problem. This problem can be converted into a
MILP by using common techniques from the MILP liter-
ature (Bradley, Hax, and Magnanti 1977) to linearize (2).
To enforce ci to be min(ep · pi + ev · vi, 1), we introduce
a large number M (dependent on the instance), continuous
variables δ and binary variables w. For each i ∈ T , we re-
quire wi ≤ ci ≤ 1, δi ≤M ·wi and ci+δi = ep ·pi+ev ·vi.
When ep · pi + ev · vi ≤ 1, wi and δi are limited to 0, thus
ci = ep · pi + ev · vi; Otherwise, ci is set to 1 since wi is
limited to 1. The complete MILP is as follows.

Maximize Ud
i∗

Subject to Ua
i∗ ≥ Ua

i (∀i ∈ T )
ci + δi = ep · pi + ev · vi (∀i ∈ T )
δi ≤M · wi, wi ≤ ci ≤ 1 (∀i ∈ T )
Ua
i = Ra

i · (1− ci) + P a
i · ci (∀i ∈ T )

Ud
i = Rd

i · ci + P d
i · (1− ci) (∀i ∈ T )

pi ≥ 0, vi ∈ N (∀i ∈ T )
δi ≥ 0, wi ∈ {0, 1} (∀i ∈ T )∑

i∈T pi ≤ rp,
∑

i∈T vi ≤ rv

By enumerating all targets as the attacked target i∗, we
can solve the RACPP problem by solving the MILP for
each target. However, the runtime of the MILP solution
is exponential in the worst case since MILP is NP-hard
(Karp 2010). In the rest of the paper, we aim to design a
polynomial-time algorithm to solve the RACPP problem.

4.2 A Polynomial Approximate Algorithm:
Two-Dimensional Binary Search

In this section, we will present a polynomial-time algorithm
that solves the RACPP problem to any desired accuracy ε.
The algorithm is based on a two-dimensional binary search.

To begin with, we first consider the following decision
problem: given a target i∗ and a fixed defender strategy
(pi∗ , vi∗) on i∗, can we find a strategy profile (p,v) such
that the attacker will choose to attack the target i∗ with best
response? We can solve this problem by greedily distribut-
ing the remaining resources to other targets. The following
Algorithm 1 checks whether a consistent strategy exists.

Algorithm 1: Checking whether a consistent strategy exists
Input: Input instance I, target i∗, strategy (pi∗ , vi∗) on i∗

Output: Whether a consistent strategy (p,v) exists
1: Compute Ua

i∗ using (2), (3) with (pi∗ , vi∗).
2: if ∃i ∈ T,Ua

i∗ < P a
i then

3: return False.
4: Let (rpremain, r

v
remain)← (rp − pi∗ , r

v − vi∗).
5: Let δi ← 0 for all i ∈ T .
6: for i ∈ {0, 1, . . . , n− 1} \ {i∗} do
7: Let cmin,i ← the minimum ci to ensure Ua

i ≤ Ua
i∗ .

8: Let vcnt,i ← min (⌊cmin,i/e
v⌋, rvremain).

9: Let rvremain ← rvremain − vcnt,i.
10: Let δi ← cmin,i − vcnt,i · ev.
11: for i ∈ {0, 1, . . . ,min(n, rvremain)− 1} do
12: Let the largest δj (j ∈ T )← 0.
13: return

∑
i ̸=i∗ δi ≤ rpremain · ep.

Definition 4.1. Given an utility u, the minimum valid cov-
erage is a vector cmin(u), where cmin,i(u) is the minimum
coverage on target i such that Ua

i ≤ u.

Definition 4.2. Given a villager strategy v and an utility
u, the wasted villager coverage is a vector cw(v, u), where
cwi (v, u) = max(vi ·ev− cmin,i(u), 0), and the total wasted
villager coverage is scw(v, u) =

∑
i̸=i∗ c

w
i (v, u).

Algorithm 1 first checks whether there are targets that al-
low the attacker utility to be higher than Ua

i∗ no matter how
many resources are allocated to them (Lines 2). If there is
such a target, then it is impossible to make i∗ the attacker’s
best response (Line 3). Otherwise, the algorithm will try
to allocate resources to other targets to ensure that the at-
tacker’s utility is no more than Ua

i∗ (Lines 4 to 12). To do
this, we first calculate the minimum coverage cmin,i for each
target i (Line 7). The problem is then to check if it is feasible
to achieve the required minimum coverage on each target.

We allocate the resources greedily: we try first to allocate
villagers and then rangers. Intuitively, this is because vil-
lagers can only be allocated to one target as a whole, while
rangers are more flexible in distributing their effort to multi-
ple targets. Specifically, we first try to allocate as many vil-
lagers as possible so that the coverage they provide is fully
utilized (Lines 8 to 10). If some villagers remain, it means
that allocating them would cause some targets to have more
coverage than necessary. We then allocate these villagers to
the targets that minimize the wasted coverage (Lines 11 to
12). Finally, we check whether there are enough ranger ef-
forts to cover the remaining needs on all targets (Line 13).
Algorithm 1 works in O(n) time to check whether there is a
consistent strategy. Formally, we have the following lemma.



Lemma 4.1. Algorithm 1 returns True if and only if there
exists a valid defender strategy profile (p,v) such that pi∗ =
p, vi∗ = v and i∗ is the attacker’s best response.

The proof of Lemma 4.1 is deferred to Appendix A.1.
Now that we have the ability to judge whether a consis-

tent strategy exists, for target i∗ and fixed defender strategy
(pi∗ , vi∗) on i∗. For those pairs of (pi∗ , vi∗) with a consis-
tent strategy, we would like to find the one that maximizes
the coverage ci∗ = min(pi∗ · ep + vi∗ · ev, 1) on i∗. We
will use a two-dimensional binary search to find this max-
imum coverage. To do this efficiently, we need to establish
two monotonicity lemmas: Lemmas 4.2 and 4.3.
Lemma 4.2. Let i∗ be a target, and let (p,v) be a valid
defender strategy profile such that i∗ is the attacker’s best
response. Then, ∀0 ≤ p ≤ pi∗ , 0 ≤ v ≤ vi∗ (v ∈ N), there
is a valid defender strategy profile (p′,v′) such that p′i∗ =
p, v′i∗ = v and i∗ is still one of attacker’s best responses.

We present the proof of Lemma 4.2 in Appendix A.2. In-
tuitively, Lemma 4.2 shows for a target i∗ that an attacker
will attack with the best response under some defender strat-
egy (p,v), we can always reduce the resources allocated to
i∗ while keeping the attacker’s best response unchanged.

We then move on to another monotonicity lemma.
Rangers and villagers can substitute each other on a spe-
cific target provided that they are of the same effectiveness,
e.g., one villager can be replaced with ev/ep units of ranger
effort. However, since a villager can only patrol on one tar-
get while a ranger can distribute their efforts among multiple
targets, ranger efforts are more flexible, and thus more use-
ful when the two kinds of resources can be converted into
the same amount of coverage. Therefore, converting ranger
efforts to villagers on target i∗ makes it easier to satisfy the
coverage needs of the other targets to make i∗ the attacker’s
best response. We formally state this intuition as follows.
Lemma 4.3. Let i∗ be a target, and let (p,v) be a valid
defender strategy profile such that i∗ is the attacker’s best
response. Then, for any p ∈ R≥0, v ∈ N such that p · ep +
v · ev = pi∗ · ep + vi∗ · ev, p ≤ pi∗ and v ≥ vi∗ , there exists
a valid defender strategy profile (p′,v′) such that p′i∗ =
p, v′i∗ = v and i∗ is still one of attacker’s best responses.

The proof of Lemma 4.3 is deferred to Appendix A.3.
With the lemmas above, we are ready for our algorithm to

compute the maximum defender utility in the RACPP prob-
lem approximately. The algorithm is shown in Algorithm 2.

Algorithm 2 enumerates all possible targets i∗ as the at-
tacker’s best response (Line 2) and tries to find the maxi-
mum coverage on i∗ as mentioned above. To do this, it first
finds the maximum number of villagers vi∗ that can be de-
ployed on target i∗ such that we can still make target i∗ the
attacker’s best response (Lines 5 to 12). Using the mono-
tonicity established in Lemma 4.2 as well as Algorithm 1,
we can use binary search to find such vi∗ . Note that as we
maximize the villagers used on target i∗, we also maximally
substitute any ranger efforts that will be allocated to i∗ with
villagers. According to Lemma 4.3, this will not make it
harder to satisfy the coverage needs of the other targets.

We then fix the number of villagers deployed at i∗ and
find the maximum possible ranger efforts pi∗ on target i∗

Algorithm 2: Two-dimensional binary search
Input: Input instance I and precision ε
Output: Approximate maximum defender utility

1: Let uans ← −∞.
2: for i∗ ∈ {0, 1, . . . , n− 1} do
3: if Algorithm 1 returns False on (I, i∗, 0, 0) then
4: continue
5: Let (vleft, vright)← (0, rv).
6: while vleft ≤ vright do
7: Let vcur ← ⌊(vleft + vright)/2⌋.
8: if Algorithm 1 returns True on (I, i∗, 0, vcur) then
9: Let vleft ← vcur + 1.

10: Let vi∗ ← vcur.
11: else
12: Let vright ← vcur − 1.
13: Let (pleft, pright)← (0, rp).
14: while pright − pleft > ε do
15: Let pcur ← (pleft + pright)/2.
16: if Algorithm 1 returns True on (I, i∗, pcur, vi∗)

then
17: Let pleft ← pcur.
18: Let pi∗ ← pcur.
19: else
20: Let pright ← pcur.
21: Compute Ud

i∗ using (pi∗ , vi∗).
22: Let uans ← max(uans, U

d
i∗).

23: return uans.

(Lines 13 to 20). Again by Lemma 4.2, pi∗ can also be found
using binary search. This pair of (pi∗ , vi∗) is guaranteed to
be optimal because we first try to maximize vi∗ , and then
pi∗ . Finally, after enumerating each possible i∗ ∈ T , the
algorithm will return the best defender utility (Lines 21 to
22). Throughout the process, Algorithm 2 makes a total of
O(n log M

ε ) calls to Algorithm 1, where M is the maximum
absolute value of the input variables. Therefore, Algorithm 2
works in O(n2 log M

ε ) time.

Theorem 4.1. Let the absolute values of the input variables
be bounded by M . Algorithm 2 generates a valid defender
strategy profile (p,v) in O(n2 · log M

ε ) time such that for
the optimal defender strategy profile (p∗,v∗),

u(p∗,v∗)− u(p,v) < ep · 2Mε.

The proof of Theorem 4.1 is presented in Appendix A.4.

4.3 A Polynomial Exact Algorithm: Hybrid
Waterfilling Algorithm

The Two-Dimensional Binary Search algorithm can solve
the RACPP problem to any given accuracy ε. However, it
is not able to solve the problem precisely. Therefore, in
this section, we study exact polynomial-time algorithms for
the RACPP problem. We will present a polynomial-time al-
gorithm, the Hybrid Waterfilling algorithm, that solves the
RACPP problem precisely.

The sense of waterfilling has been applied to mathemat-
ical models in security domains (Kiekintveld et al. 2009;
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Figure 1: Example of the process in Algorithm 4. The 3 black rectangles represent 3 targets. The orange parts are the villager
coverage and the blue ones are the ranger coverage. The green line is the utility sea level. (a) Target i∗ = 0 and villager strategy
vi∗ = 1 are given. We greedily allocate the remaining 3 villagers to target i ∈ {1, 2} with the maximum Ua

i in the order of
target 2, 2, 1. (b) Critical set is {1}. We distribute ranger efforts by Waterfilling, lowering the sea level, until we reach the
critical point when the area of the blue part on target 3 is equal to the area of villager 3 above the sea level. (c) We swap ranger
efforts on target 2 and villager 3 on target 2. (d) We proceed with Waterfilling until rangers are used up.

Nguyen et al. 2015). The main challenge caused by the in-
volvement of villagers is deterministic allocation. The ef-
forts of a villager can only be allocated to one target and
can not be distributed to multiple targets, which breaks the
continuous change of water level in standard waterfilling al-
gorithm (Thomas and Joy 2006).

When there are only rangers, the RACPP problem be-
comes a standard security game problem, which can be ex-
actly solved by Waterfilling. Whereas when there are only
villagers, the RACPP problem can also be solved exactly by
greedily allocating each villager to the target with the max-
imum attacker utility. Our Hybrid Waterfilling algorithm
combines these two methods to solve the RACPP problem
precisely. We formally state the algorithm as Algorithm 5 in
Appendix B. Below, we present the intuition.

Algorithm 5 relies on an important subproblem: given a
target i∗ that the attacker will attack and a fixed villager
strategy vi∗ on i∗, how to allocate the remaining villagers
and rangers to maximize the defender utility? We use a hy-
brid method of Greedy and Waterfilling to solve this sub-
problem. See Fig. 1 for an illustration.

First, we focus only on the villagers, greedily allocating
them to targets i ∈ T \{i∗} with the maximum attacker util-
ity Ua

i (Fig. 1a). At this time, there is a set of targets that
maximize the attacker’s utility. We call this set the critical
set, and the corresponding utility the utility sea level. We
then distribute ranger efforts in a way similar to Waterfilling,
i.e., always allocating them to the critical set to lower the sea
level. At some point in this process, it might be possible to
exchange a villager and some ranger efforts on two targets,
such that the sea level remains unchanged but the villager
goes to a target with a larger width (wi = 1/(Ra

i − P a
i ))

(Fig. 1b), we call this a critical point, which triggers a swap
(Fig. 1c). After the swap, the total width of the critical set
decreases, and thus the amount of ranger efforts required
to lower a unit of the sea level decreases. We continue this
process until all ranger efforts are used up (Fig. 1d). We for-
mally summarize the process as Algorithm 4 in Appendix B.
The algorithm works in O(n3 log n) time.

With the subproblem solved, we can then solve RACPP.

To do this, we first enumerate all i∗ ∈ T . For each given
i∗, we first use binary search to find the maximum number
of villagers that can be allocated to target i∗ while ensur-
ing i∗ is still the attacker’s best response. This is similar to
the Two-Dimensional Binary Search algorithm. We then call
Algorithm 4 to find the optimal defender utility for the given
i∗ and vi∗ . Finally, we return the maximum defender util-
ity among all i∗. The optimality and time complexity of the
algorithm is demonstrated in the following theorem.

Theorem 4.2. Algorithm 5 generates an optimal valid de-
fender strategy profile (p,v) in O(n4 log n) time.

The proof of Theorem 4.2 is deferred to Appendix B. Be-
low, we provide a proof sketch of the theorem.

Proof Sketch of Theorem 4.2. To show the correctness of
the algorithm, we first need to show its correctness for the
subproblem, i.e., Algorithm 4 generates an optimal valid de-
fender strategy profile (p,v) for a given target i∗ and vil-
lager deployment strategy vi∗ . Note that in Algorithm 4, the
sea level ucur lowers continuously as we distribute ranger
efforts. For a fixed sea level ucur in the Waterfilling pro-
cess, Algorithm 4 generates a strategy profile that ensures
that i∗ is the attacker’s best responses with utility ucur. In
this strategy profile, we define the wasted villager cover-
age scw(ucur) as the coverage provided by villagers that are
not needed to ensure that i∗ is the attacker’s best response.

We will show that the wasted villager coverage is mini-
mized at each sea level ucur, which effectively means that
the amount of ranger efforts required to reach this sea level
is minimized. This is done in two steps: (i). We show that
given sea level ucur, we cannot redistribute the ranger ef-
forts and at most one villager to reduce the wasted villager
coverage. (ii). We show that the wasted villager coverage is
minimized at each sea level ucur. For step (i), the calculation
of the critical points in Algorithm 4 ensures it. For step (ii),
we show by an adjustment argument that if (i) holds, then
the structure of the wasted villager coverage ensures that re-
distributing more villagers cannot reduce the wasted villager
coverage, either. This completes the proof of the correctness
of Algorithm 4. The correctness of Algorithm 5 then follows



from the correctness of Algorithm 4 and the correctness of
the binary search part, which is similar to Algorithm 2.

For the complexity, since Algorithm 1 works in O(n), the
binary search part of Algorithm 5 works in O(n2 logM)
time, where M is the maximum absolute value of the in-
put variables. For the procedure of the subproblem in Al-
gorithm 4, note that each swap operation causes a villager
to be moved to a target with a larger width, and only O(n)
villagers can possibly be moved. Therefore, the number of
swaps, i.e., the number of iterations of Algorithm 4 is O(n2).
Using a priority queue to simulate the procedure, each iter-
ation takes O(n log n) time. Therefore, the total time com-
plexity of Algorithm 4 is O(n3 log n). Assuming M is poly-
nomially bounded by n, the total time complexity of Algo-
rithm 5 is O(n4 log n). This concludes the proof sketch.

5 Extensions for Practical Constraints
In practice, the actual defense effectiveness varies with real-
world factors. For instance, geographical features like vege-
tation and slope can affect the defense effectiveness, which
results in differences in defense effectiveness on different
targets. Moreover, individual factors, like the domain knowl-
edge and experience of the person, can also influence de-
fense effectiveness. Due to their lack of training, these prac-
tical factors have a greater impact on the villagers. There-
fore, in this section, we consider two generalized versions of
the RACPP problem, where the villagers’ defense effective-
ness varies with the targets and the villagers, respectively.
Interestingly, for the former, our algorithms in Section 4 can
be adapted to solve the problem exactly in polynomial time.
However, in the latter case, the problem becomes NP-hard.

RACPP with Target-Specific Effectiveness. We first
consider the case where the defense effectiveness of vil-
lagers varies with the targets. Specifically, we redefine vil-
lagers’ defense effectiveness as ev, where evi represents the
effectiveness of one villager on target i.

Both algorithms in Section 4 can be naturally adapted to
solve RACPP with target-specific effectiveness. For simplic-
ity, we only present the adapted version of Algorithm 2 here.

Recall that Algorithm 2 is based on a two-dimensional
binary search that needs to check whether a consistent strat-
egy exists for a given target i∗ and fixed defender strategy
(pi∗ , vi∗) on i∗ (Algorithm 1). In this new setting, we mod-
ify this procedure to Algorithm 6 stated in Appendix C.

Like Algorithm 1, the general idea of Algorithm 6 is to
greedily distribute the resources to other targets to ensure
that the attacker’s utility is no more than Ua

i∗ . The main
difference is that the coverage generated by villagers on
each target is now different. For each villager, the algo-
rithm greedily allocates them to the target, which maximizes
the coverage each villager can cover. Finally, the algorithm
checks whether there are enough ranger efforts as in Algo-
rithm 1. The whole process can be implemented in O(n)
time. Formally, we have Lemma 5.1.

Lemma 5.1. Algorithm 6 returns True if and only if there
exists a valid defender strategy profile (p,v) such that pi∗ =
p, vi∗ = v and i∗ is the attacker’s best response.

The proof of Lemma 5.1 is deferred to Appendix D.1. Al-
gorithm 2 in TDBS Algorithm can stay unchanged in the
new setting, and the time complexity is still O(n2 log M

ε ).

RACPP with Villager-Specific Effectiveness. We then
consider the case where the defense effectiveness of vil-
lagers varies with the villagers. Let V = {0, 1, · · · , rv − 1}
be the set of villagers. We redefine villagers’ defense effec-
tiveness as a vector ev, where evj represents the effectiveness
of villager j ∈ V on all targets.

Interestingly, the problem becomes NP-hard in this set-
ting. We prove that RACPP with villager-specific effective-
ness is NP-hard by reducing the partition problem (Hayes
2002) to it. The details are deferred to Appendix D.2.
Theorem 5.1. Computing the maximum defender utility and
the optimal valid strategy profile of the RACPP problem with
villager-specific effectiveness is NP-hard.

6 Experiments
In this section, we conduct numerical experiments on syn-
thetic data to evaluate the performance of our algorithms
in practice. We implement our Two-Dimensional Binary
Search algorithm (TDBS) and Hybrid Waterfilling algorithm
(HW), along with a benchmark algorithm using Gurobi’s
(Gurobi Optimization, LLC 2023) Mixed Integer Linear
Programming (MILP) solver. Since all of the implemented
algorithms have guaranteed solution quality, we observe
similar performance in terms of the defender’s utility from
all of them. Therefore, we focus on the runtime of these al-
gorithms. The experiments are conducted on a server with
an Intel Xeon E5-2683 v4 CPU and 269.5GB RAM.

Experiment setup. We evaluate the algorithms with dif-
ferent combinations of (n, rp, rv). For each combination,
we randomly generate ep, ev, Rd, Pd, Ra, Pa with 0 <
ev < ep < 1, Rd

i , R
a
i ∈ [0, 10) and P d

i , P
a
i ∈ [−10, 0) and

record the runtime of the algorithms. We report the mean and
the standard deviation of the runtime over 30 runs for each
combination. The precision of TDBS is set to 10−3. If a sin-
gle run of an algorithm exceeds 7200 seconds, we interrupt
it and record the runtime as 7200 seconds.

Performance with different n. We let n = {5, 10, 30,
50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}, and
let rp and rv be ⌊n2 ⌋. As shown in Fig. 2a, the runtime of
TDBS is significantly lower than the other two algorithms.
Although it is not an exact algorithm, the results with pre-
cision 10−3 are accurate enough for practical applications
with the guarantee proven in Theorem 4.1.

Performance with different rp, rv. We then fix n = 100
and let rp = rv be {0, 1, . . . , 50}. As shown in Fig. 2b,
both of our proposed algorithms’ runtimes are stable with
different rp and rv. However, the performance of MILP is
highly unstable due to its lack of time complexity guarantee.

Additional experiments are presented in Appendix E.

7 Case Study on Anti-poaching
We have applied RACPP to a protected area in Northeast
China, home to the Manchurian tiger. To protect the raw



0 200 400 600 800 1000
Number of Targets

0

2000

4000

6000

8000
Ru

nt
im

e 
(s

)
MILP
TDBS
HW

(a) runtime with different n and rp = rv = ⌊n
2
⌋

0 10 20 30 40 50
Villager Resources (rv)

0
500

1000
1500
2000
2500

Ru
nt

im
e 

(s
)

MILP
TDBS
HW
MILP
TDBS
HW

(b) runtime with n = 100 and different rp, rv

Figure 2: Average runtime of MILP, TDBS, and HW over 30 runs under different combinations of (n, rp, rv). The error bars
indicate the standard deviation. The shaded areas represent the ranges from the minimum to the 97th percentile. We limit the
maximum runtime for MILP in Fig. 2b to 7200 seconds.
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Figure 3: The contour of the studied forest farm and case study results regarding advice on strategies and budget allocation.

data which includes past patrol allocation and animal den-
sity, we only report the information that can be made pub-
lic based on discussions with local agencies. The contour of
the protected area is shown in Fig. 3a. The protected area
is divided into 21 2km×2km regions in the last three patrol
seasons for patrol planning, and we naturally use these re-
gions as targets, i.e., T = {0, 1, . . . , 20}. Ranger resources
rp and villager resources rv are provided by local agencies.
Besides, since roe deer and sika deer are the main prey of
Manchurian tigers in that area, we use a weighted distribu-
tion of multiple species including roe deer, sika deer, and
wild boars to estimate the reward for the poacher Ra

i , which
is shown in Table 1 in Appendix F. We set P d

i = −Ra
i . Since

defenders care less about where they find snares or catch at-
tackers and attackers face the same amount of fine wherever
they are caught, −P a

i and Rd
i are set to a fixed number 10.

In this experiment, we calculate and compare the opti-
mal patrol strategy with the current one. First, we obtain
the villager allocation strategy from local agencies and pro-
cess last season’s ranger patrol records to determine their
strategy. Specifically, we calculate the total length of pa-
trol routes within each target to derive the distribution of
ranger efforts and, combined with ranger resources rp, esti-
mate the resources allocated to each target. Since the exact
values of ep and ev are unknown, we enumerate their values
in 0.1, 0.2, . . . , 0.9 with ep ≥ ev, resulting in 45 settings.
After generating optimal defender strategies and total cover-
age for each target, we compare them to the current strategy

in the protected area and summarize the findings in Fig. 3b.
The length of the orange bar shows how many (ep, ev) set-
tings suggest reducing coverage on that target. For instance,
for target 0, the optimal coverage is lower than the current
level across all settings, while target 18 consistently requires
increased coverage. Fig. 3c shows the distribution of cover-
age changes for all targets. Defender utility is expected to
improve 25. 9% - 152. 6%, with an average of 83. 1%.

When the total budget for recruiting rangers and villagers
increases, should we use the extra money to recruit more
rangers or more villagers? The current cost ratio of one
ranger versus one villager is 3:1. We calculate the optimal
plan of allocating the extra money with two different (ep, ev)
settings when the budget increase ranges from 1 unit to 30
units and show the results in Fig. 3d. When ep = 0.8 and
ev = 0.2, prioritizing recruitment of rangers is more cost-
efficient. In contrast, when ep = 0.6 and ev = 0.4, we
should spend all budgets on villagers. Additional results for
other settings are shown in Appendix F.

We run additional experiments that take into account the
terrain information as it is relatively easier to find snares on
targets with higher slope variance according to domain ex-
perts. The results are shown in Appendix F.

We plan to collaborate with the local forest bureau in
Northeast China to adjust future patrol resource allocation
based on the case study findings. The planned work includes
refining the range of ep and ev through a poaching detection
competition where the locations of the poaching tools are
known and thus offering more precise recommendations.
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A Missing Proofs in Section 4.2
A.1 Proof of Lemma 4.1
Lemma 4.1. Algorithm 1 returns True if and only if there
exists a valid defender strategy profile (p,v) such that pi∗ =
p, vi∗ = v and i∗ is the attacker’s best response.
Proof of Lemma 4.1: For a valid defender strategy profile
(p,v) satisfying pi∗ = p, vi∗ = v and i∗ is the attacker’s
best response, the followings must hold: (a) pi ∈ R≥0, (b)
vi ∈ N, (c)

∑
i∈T pi ≤ rp, (d)

∑
i∈T vi ≤ rv, (e) pi∗ = p,

(f) vi∗ = v, and (g) Ua
i∗ ≥ Ua

i (∀i ∈ T ).
Sufficiency. After Algorithm 1, we construct (p,v) as

pi =

{
δi/e

p (i ∈ T \ {i∗})
p (i = i∗),

vi =

{
vcnt,i + 1 (i ∈ T \ {i∗}, i is visited on Line 12)
vcnt,i (i ∈ T \ {i∗}, i is not visited on Line 12)
v (i = i∗).

We first prove that if Algorithm 1 returns True, the con-
structed (p,v) is a valid defender strategy profile that satis-
fies (a) to (g).

After executing Lines 6 to 10, δi ≥ 0 since vcnt,i ≤
cmin/e

v. The property still holds after executing Lines 11
to 12. Hence, pi = δi/e

p ≥ 0 (∀i ∈ T \ {i∗}). Combined
with pi∗ = p ≥ 0, (a) holds.

Since cmin ≥ 0 and rvremain ≥ 0 always hold on Lines 6 to
10, vcnt,i = min (⌊cmin/e

v⌋, rvremain) ∈ N. After executing
Lines 11 to 12, the extra 1 added to some of the vi doesn’t
break the property. Combined with vi∗ = v ∈ N, (b) holds.

From Line 13, we know that
∑

i∈T\{i∗} δi/e
p ≤ rpremain.

Since rpremain = rp − pi∗ , we derive that
∑

i∈T pi ≤ rp and
(c) holds.

From Lines 8 to 9, rvremain +
∑

i∈T\{i∗} vcnt,i = rv −
vi∗ always holds. After executing Lines 11 to 12, the sum
of extra 1 added to some of the vi doesn’t exceed rvremain.
Therefore,

∑
i∈T vi − vi∗ ≤ rv − vi∗ , and (d) holds.

(e) and (f) hold since we set pi∗ and vi∗ to p and v.
On Line 7, we calculate a minimum coverage ci as cmin,i

to ensure Ua
i ≤ Ua

i∗ . After executing Lines 6 to 10, δi +
vcnt,i · ev = cmin,i and δi < ev if rvremain > 0. After execut-
ing Lines 11 to 12, δi + vi · ev ≥ cmin,i since some of the
δi are replaced by extra ev. Hence, pi · ep + vi · ev ≥ cmin,i

(∀i ∈ T \ {i∗}) and (g) holds.
Therefore, there exists a valid defender strategy profile

(p,v) such that pi∗ = p, vi∗ = v and i∗ is the attacker’s
best response if Algorithm 1 returns True.

Necessity. We will prove the necessity of Algorithm 1
by contradiction. Assume that there exists a valid defender
strategy profile (p,v) such that pi∗ = p, vi∗ = v and i∗ is
the attacker’s best response, while Algorithm 1 returns False.

Although Algorithm 1 returns False, it generates a de-
fender strategy v′ for villagers, where

v′i =

{
vcnt,i + 1 (i ∈ T \ {i∗}, i is visited on Line 12)
vcnt,i (i ∈ T \ {i∗}, i is not visited on Line 12)
v (i = i∗).

The strategy v′ satisfies properties (b), (d) and (f) with an
argument similar to the sufficiency part.

Without loss of generality, we can assume both v and
v′ allocate all villagers to the targets. Hence, we know that∑

i ̸=i∗ vi =
∑

i̸=i∗ v
′
i.

After executing Lines 6 to 10, Algorithm 1 allocates vcnt,i
villagers, which don’t exceed cmin,i/e

v, thus cwi (v
′) = 0

(∀i ∈ T ). On Lines 11 to 12, Algorithm 1 distributes vil-
lages to targets with maximum δi = cmin,i − vcnt,i · ev,
minimizing vi · ev − cmin,i. Hence, v′ guarantees a mini-
mum

∑
i ̸=i∗ c

w
i (v

′) and we can know that
∑

i ̸=i∗ c
w
i (v

′) ≤∑
i ̸=i∗ c

w
i (v).

Therefore, after villager distributions are set, the sum of
coverage needed to by filled with rangers over all targets∑

i ̸=i∗(cmin,i − v′i · ev + cwi (v
′)) ≤

∑
i ̸=i∗(cmin,i − vi ·

ev+cwi (v)). Since Algorithm 1 returns False, we derive that∑
i ̸=i∗(cmin,i− v′i · ev+ cwi (v

′)) > (rp− p) · ep. Therefore,
we can conclude that (rp−p) ·ep <

∑
i ̸=i∗(cmin,i−vi ·ev+

cwi (v)), which means there are no enough ranger efforts to
construct a p as the strategy for ranger in the valid defender
strategy profile (p,v). We get a contradiction.

A.2 Proof of Lemma 4.2
Lemma 4.2. Let i∗ be a target, and let (p,v) be a valid
defender strategy profile such that i∗ is the attacker’s best
response. Then, ∀0 ≤ p ≤ pi∗ , 0 ≤ v ≤ vi∗ (v ∈ N), there
is a valid defender strategy profile (p′,v′) such that p′i∗ =
p, v′i∗ = v and i∗ is still one of attacker’s best responses.
Proof of Lemma 4.2: We can construct a defender strategy
profile (p′,v′) where

p′i =

{
pi (i ∈ T \ {i∗})
p (i = i∗),

v′i =

{
vi (i ∈ T \ {i∗})
v (i = i∗).

We will show that (p′,v′) satisfies (a) p′i ∈ R≥0, (b) v′i ∈
N, (c)

∑
i∈T p′i ≤ rp, (d)

∑
i∈T v′i ≤ rv, (e) p′i∗ = p, (f)

v′i∗ = v, and (g) Ua′
i∗ ≥ Ua′

i (∀i ∈ T ).
Since (p,v) is a valid defender strategy profile, we know

that pi ∈ R≥0, vi ∈ N,
∑

i∈T pi ≤ rp and
∑

i∈T vi ≤ rv.
Combined with 0 ≤ p′i∗ = p ≤ pi∗ and 0 ≤ v′i∗ = v ≤ vi∗
(v ∈ N), we can easily derive that (a), (b), (c) and (d) hold.
(e) and (f) hold because we set p′i∗ and v′i∗ respectively to p
and v.

We know that Ua
i∗ ≥ Ua

i (∀i ∈ T ) since with the defender
strategy profile (p,v), an attacker will attack target i∗. Be-
cause p′i = pi (∀i ∈ T \ {i∗}) and v′i = vi (∀i ∈ T \ {i∗}),
we can get that Ua′

i = Ua
i (∀i ∈ T \{i∗}). We can derive that

Ua′
i∗ ≥ Ua

i∗ from the fact that p′i∗ ≤ pi∗ and v′i∗ ≤ vi∗ . We
can conclude that Ua′

i∗ ≥ Ua
i∗ ≥ Ua

i = Ua′
i (∀i ∈ T \ {i∗}).

Hence, property (g) also holds.

A.3 Proof of Lemma 4.3
Lemma 4.3. Let i∗ be a target, and let (p,v) be a valid
defender strategy profile such that i∗ is the attacker’s best
response. Then, for any p ∈ R≥0, v ∈ N such that p · ep +
v · ev = pi∗ · ep + vi∗ · ev, p ≤ pi∗ and v ≥ vi∗ , there exists
a valid defender strategy profile (p′,v′) such that p′i∗ =
p, v′i∗ = v and i∗ is still one of attacker’s best responses.



Proof of Lemma 4.3: We can construct a defender strategy
profile (p′,v′) where p′i∗ = p and v′i∗ = v, so (v′i∗ − vi∗) ·
ev = (pi∗−p′i∗)·ep. For i ∈ T \{i∗}, we can keep ci = c′i by
replacing the (v′i∗−vi∗) villagers with the spared (pi∗−p′i∗)
ranger efforts. Therefore, we can derive that Ua′

i = Ua
i (∀i ∈

T ). The adjustment from (p,v) to (p′,v′) doesn’t break the
definition of a valid defender strategy profile.

Since with the defender strategy profile (p,v), target i∗ is
the attacker’s best response, we know that Ua

i∗ ≥ Ua
i (∀i ∈

T ). We can conclude that Ua′
i∗ = Ua

i∗ ≥ Ua
i = Ua′

i for
all i ∈ T \ {i∗}. Hence, target i∗ is still the attacker’s best
response with valid defender strategy profile (p′,v′).

A.4 Proof of Theorem 4.1
Theorem 4.1. Let the absolute values of the input variables
be bounded by M . Algorithm 2 generates a valid defender
strategy profile (p,v) in O(n2 · log M

ε ) time such that for
the optimal defender strategy profile (p∗,v∗),

u(p∗,v∗)− u(p,v) < ep · 2Mε.

Proof of Theorem 4.1: First, we will prove the correctness
of Algorithm 2. Let target i∗ be the attacker’s best response
with the defender strategy profile (p,v), and i∗′ be that with
(p∗,v∗). We can prove the correctness by discussing the two
cases whether i∗ is equal to i∗′ or not.

In the first case, we discuss the situation where i∗ = i∗′.
By applying Lemma 4.3 to v∗, replacing every ev/ep ranger
efforts on target i∗′ with one villager won’t cause utility to
decrease. Therefore, we can assume that vi∗ = vi∗′ after
executing Lines 5 to 12 and finding the maximum vi∗ that
can be allocated to target i∗. By Lemma 4.2, given target i∗
and villager resources vi∗ , if i∗ is not the attacker’s best re-
sponse when x ranger efforts are allocated on target i∗, we
can reject all ranger efforts p larger than x. Therefore, binary
search on Lines 13 to 20 can gradually narrow the range that
pi∗ can fall in given i∗ and vi∗ . Combined with Lemma 4.1,
we can know that p∗i∗′ − pi∗ < ε. On account of vi∗ = v∗i∗′ ,
coverage c∗i∗′ − ci∗ < ep · ε. Because of the monotonic-
ity of defender utility on coverage, we can conclude that
u(p∗,v∗)− u(p,v) < ep · ε · (Rd

i∗′ − P d
i∗′) ≤ ep · 2Mε.

If i∗ ̸= i∗′, considering Algorithm 2 chooses a strategy
with maximum utility on Line 22, we know that u(p,v) is
larger than any defender utility that can be achieved when
i∗ = i∗′. Integrated with the fact proved in the first case, we
can claim that u(p∗,v∗)− u(p,v) < ep · 2Mε if i∗ ̸= i∗′.

Then, we will prove the time complexity of Algorithm 2
is O(n2 · log M

ε ). In Algorithm 2, there are totally O(n(1 +

log rv + log rp

ε )) = O(n · log M
ε ) calls to Algorithm 1. In

Algorithm 1, Lines 2 to 3 and Lines 6 to 10 are of time com-
plexity O(n); Lines 11 to 12 are also of time complexity
O(n) since we can expect to find the min(n, rvremain) largest
elements in δ in linear time with quickselect and quicksort
(Cormen et al. 2022). Therefore, Algorithm 1 works in O(n)
and Algorithm 2 is of time complexity O(n2 · log M

ε ).

B Missing Details in Section 4.3
B.1 Details of the HW Algorithm
In this section, we will present some details of the HW algo-
rithm, which is omitted in Section 4.3. It will include a for-

mal description of the HW algorithm and a rigorous proof of
its correctness and time complexity.

Given the villager strategy vi on target i, the coverage
caused by villagers is defined as cvi , and the attacker util-
ity only taking villagers into account is Ua,v

i . The value of
cvi and Ua,v

i can be computed with

cvi = min(ev · vi, 1)
Ua,v
i = Ra

i · (1− cvi ) + P a
i · cvi

(4)

In Section 4.3, we have mentioned that swaps are trig-
gered at critical points, where for targets i, j, the coverage
resulted from rangers on target i is equal to the coverage
(above the sea level) caused by the last villager on target j.
This equality relationship can be formally described as

Ua,v
i − Ua′

i

Ra
i − P a

i

=
Ra

j − (Ra
j − P a

j · ev · (vj − 1))− Ua′
i

Ra
j − P a

j

(5)
where Ua′

i is the sea level at the critical point. Consider the
process of Waterfilling starting from a sea level Ua

i , for a
specific pair of targets i, j, the minimum sea level drop be-
fore hitting a critical point can be calculated as
udrop(i, j) = Ua

i − Ua′
i = Ua

i − Ua,v
i

+
(Ra

j − (Ra
j − P a

j ) · ev · (vj − 1)− Ua,v
i ) · (Ra

i − P a
i )

(Ra
j − P a

j )− (Ra
i − P a

i )
(6)

To find the minimum sea level drop before triggering a
critical point, we need to calculate udrop(i, j) for all pairs of
targets i, j, where i is in the critical set and j is not in the set,
and find the minimum value. The formal steps are presented
in Algorithm 3. Here, Scur is the current critical set, and i∗

is the target that the attacker will attack.

Algorithm 3: Calculate min utility drop before swapping
Output: Minimum utility drop, the target swapping out
rangers and the target swapping out villagers

1: procedure getSwapLine()
2: Let (uchange, ioutp, ioutv)← (∞,None,None).
3: for i ∈ Scur \ {i∗} do
4: for j ∈ T \ (Scur ∪ {i∗}) do
5: if udrop(i, j) < uchange and ucur − udrop(i, j) ≥

P a
j and wj < wi and pj = 0 and vj > 0 then

6: Let (uchange, ioutp, ioutv)← (udrop(i, j), i, j).
7: return uchange, ioutp, ioutv.

Then in Algorithm 4, we can solve the important subprob-
lem that given a target i∗ that the attacker will attack and a
villager strategy vi∗ on i∗, we need to allocate the remaining
villagers and rangers to maximize the defender utility.

Finally, we state the HW algorithm in Algorithm 5.

B.2 Proofs of the HW Algorithm
Then, we will demonstrate the correctness and time com-
plexity of the HW algorithm. After all villagers are allocated
and during the process of Waterfilling, there is an important
property that on every target, there is at most one wasted
villager. Formally, we have the following lemma.



Algorithm 4: Ranger strategy generator of HW
Input: Input instance I, target i∗, villager strategy vi∗on i∗

Output: Optimal valid strategy profile (p,v)

1: Compute Ua
i∗ using (3) with (0, vi∗).

2: Let Ua
i ← Ra

i for all i ∈ T, i ̸= i∗.
3: Let vi ← 0 for all i ∈ T, i ̸= i∗.
4: Let pi ← 0 for all i ∈ T .
5: Let wi ← 1/(Ra

i − P a
i ) for all i ∈ T .

6: Let (rpremain, r
v
remain)← (rp, rv − vi∗).

7: for t ∈ {1, 2, . . . , rvremain} do
8: Let j ← argmaxi{Ua

i | i ̸= i∗, Ua
i ̸= P a

i }.
9: Let vj ← vj+1 and update Ua

j using (3) with (0, vj).
10: Let Ua,v

i ← Ua
i for all i ∈ T .

11: while rpremain > 0 and ∃i, Ua
i ̸= P a

i do
12: if ∃i such that Ua

i = P a
i = Ua

i∗ then
13: return p.
14: Let ulast ← ucur if ucur exists.
15: Let ucur ← maxi{Ua

i | Ua
i ̸= P a

i }.
16: Let unext ← maxi{Ua

i | Ua
i ̸= ucur, U

a
i ̸= P a

i }.
17: Let Scur ← {i | Ua

i = ucur, U
a
i ̸= P a

i }.
18: Let fswap ← True.
19: Let (uδ, ioutp, ioutv)← getSwapLine().
20: Let P a

max ← maxi{P a
i | i ∈ T} if i∗ ∈ Scur.

21: Let P a
max ← maxi{P a

i | i ∈ Scur} if i∗ ̸∈ Scur.
22: if ucur − uδ < P a

max then
23: Let uδ ← ucur − P a

max.
24: Let fswap ← False.
25: if unext ̸= None and ucur − uδ < unext then
26: Let uδ ← ucur − unext.
27: Let fswap ← False.
28: Let rpδ ←

∑
i∈Scur

wi · uδ/e
p.

29: if rpδ > rpremain then
30: Let rpδ ← rpremain.
31: Let fswap ← False.
32: Let uδ ← rpδ · ep/(

∑
i∈Scur

wi).
33: Let rpremain ← rpremain − rpδ .
34: for i ∈ Scur do
35: Let Ua

i ← Ua
i − uδ .

36: Let pδ ← uδ/(e
p · (Ra

i − P a
i )).

37: Let pi ← pi + pδ .
38: if fswap then
39: Let vioutv

← vioutv
− 1.

40: Let vioutp
← vioutp

+ 1.
41: Let pioutv

← pioutp
.

42: Let pioutp ← 0.
43: for i ∈ {ioutv, ioutp} do
44: Update Ua

i and Ua,v
i using (3), (4) with (pi, vi).

45: return (p,v).

Algorithm 5: Hybrid Waterfilling Algorithm
Input: Input instance I
Output: Maximum defender utility

1: Let uans ← −∞.
2: for i∗ ∈ {0, 1, . . . , n− 1} do
3: if Algorithm 1 returns False on (I, i∗, 0, 0) then
4: continue
5: Let (vleft, vright)← (0, rv).
6: while vleft ≤ vright do
7: Let vcur ← ⌊(vleft + vright)/2⌋.
8: if Algorithm 1 returns True on (I, i∗, 0, vcur) then
9: Let vleft ← vcur + 1.

10: Let vi∗ ← vcur.
11: else
12: Let vright ← vcur − 1.
13: Let (p,v)← result of Algorithm 4 on (I, i∗, vi∗).
14: Compute Ud

i∗ using (pi∗ , vi∗).
15: Let uans ← max(uans, U

d
i∗).

16: return uans.

Lemma B.1. Let ucur be maxi{Ua
i | Ua

i ̸= P a
i }. Each

time Algorithm 4 reaches Line 11, for any target i ̸= i∗, if
Ua
i < ucur, then Ra

i − (Ra
i − P a

i ) · ev · (vi − 1) ≥ ucur.

Proof of Lemma B.1: First, we will prove by contradic-
tion that when Algorithm 4 reaches Line 11 at the first
time, every target can have at most one wasted villager. As-
sume that there exists a target i such that Ua

i < ucur and
Ra

i − (Ra
i − P a

i ) · ev · (vi − 1) < ucur.
Since Ua

j can only decrease during Lines 7 to 9, we can
know that before allocating the extra villager to i, sea level
u′
cur ≥ ucur. That means there exists a target k such that

Ua
k = u′

cur and Ua
k ̸= P a

k . Therefore, when allocating that
villager, we can derive Ua

k ≥ ucur > Ra
i − (Ra

i − P a
i ) · ev ·

(vi − 1). Combined with the fact that we choose j with the
largest Ua

j (Ua
j ̸= P a

j ) on Line 8, Algorithm 4 will allocate
that villager to target k instead of target i. There we get a
contradiction.

Then, we will prove after executing Lines 11 to 43, the
property keeps. Since we move a villager when hitting a crit-
ical point, where the coverage of that villager above ucur is
the same as the ranger coverage on target ioutp, the wasted
villager coverage of that villager won’t change if we move it
to target ioutp. Therefore, the wasted villager on every target
will not be more than one villager after executing Lines 11
to 43 because we have this property before reaching Line 11.

Hence, each time Algorithm 4 reaches Line 11, the prop-
erty is satisfied.

With Lemma B.1 in mind, we can move on to prove that
the valid strategy profile (p,v) generated by Algorithm 4 re-
sults in maximized defender utility by demonstrating it min-
imizes wasted villager coverage. First, Lemma B.2 formally
describes an intuition that we can not move at most one vil-
lager and reduce the wasted villager coverage.

Lemma B.2. Let i∗ be a given target. In every iteration on
Lines 11 to 43 in Algorithm 4, for u ∈ (ucur, ulast], Algo-
rithm 4 generates a villager strategy v such that there does



not exist a (v′, i1, i2) tuple, where i1 ̸= i∗, i2 ̸= i∗,

v′i =

{
vi + 1 (i = i1)
vi − 1 (i = i2)
vi (i /∈ {i1, i2}),

and scw(v′, u) < scw(v, u).
Proof of Lemma B.2: We will explain why it is not possible
to move one villager and reduce scw(v, u) with induction.

When reaching Line 11 the first time, there are no allo-
cated ranger efforts. For those targets in critical set i ∈ Scur,
moving a villager to i will cause wasted villager coverage
cwi = ev. Based on Lemma B.1, for targets not in critical
set j /∈ Scur, there is at most cwj = ev amount of wasted
villager coverage. If wi ≤ wj , the decreasing speed of cwi is
less than or equal to that of cwj , and cwi > cwj will keep. If
wi > wj , the decreasing speed of cwi is more than that of cwj ,
and before reaching cwi < cwj , there is a point when cwi = cwj
because the change of cwi and cwj is continuous. At that point,
Algorithm 3 hits a critical point and thereby moves a villager
to a target with less wasted villager coverage.

When it is not the first time that we reach Line 11, pos-
sibly some ranger efforts have been allocated. Assume that
we can not move one villager and make scw(v, u) smaller
now, which means for any tuple (i, j) such that i ∈ Scur and
j /∈ Scur, moving a villager to i and moving out all rangers
on i will cause wasted villager coverage cwi > cwj , which is
the wasted villager coverage on target j. Similar to the proof
in the last paragraph, Algorithm 3 will hit a critical point and
swap before any possible situation where cwi < cwj occurs.

Therefore, combine the last two paragraphs, on the ba-
sis of v, we can’t move one villager and make scw(v, u)
smaller since all such swaps have been hit before.

Based on Lemma B.2, we can further present that the gen-
erated (p,v) leads to the minimal wasted villager coverage.
Lemma B.3. Let i∗ be a given target. In every iteration on
Lines 11 to 43 in Algorithm 4, for u ∈ (ucur, ulast], Al-
gorithm 4 generates a villager strategy v with a minimum
scw(v, u).
Proof of Lemma B.3: First, we convert the problem to an-
other setting. Given u, every time we allocate one villager to
a target, it will cause wasted villager coverage within [0, ev].
So, every villager strategy v corresponds to a set S(v), the
element of which is every villager’s wasted coverage, and
|S(v)| = rv. The set of all villager position choices can be
converted into a set Sall.

From Lemma B.2, we know that we cannot move one vil-
lager on the basis of v and make scw(v, u) smaller. The
moving out from one target is equivalent to delete the corre-
sponding element from S(v). Actually, we are not allowed
to add a random element m ∈ Sall \ S(v) to S(v) if the
wasted villager coverage caused by m is not zero and the
positions with no waste on the same target have not been
chosen. However, choosing position m with waste is a even
worse choice than choosing the position with no waste on
the same target, which is allowed on account of Lemma B.2.
Therefore, we can derive that it is not possible to delete one
element from S(v), then add one element among not chosen
positions, and reduce

∑
m∈S(v) m.

Then, we will prove the lemma with contradiction.
Assume that there is a villager strategy v′ such that
scw(v′, u) < scw(v, u), which means

∑
m∈S(v′) m <∑

m∈S(v) m. Since |S(v′)| = |S(v)| = rv, there exists
p ∈ S(v) \ S(v′) and q ∈ S(v′) \ S(v) such that q < p.
Therefore, deleting p from S(v) and then adding q to it can
make it smaller, which contradicts the conclusion in the last
paragraph. As a result, there are no villager strategy v′ such
that scw(v′, u) < scw(v, u), and the villager strategy v
achieves the minimum scw(v, u).

Now that we have proved the correctness of Algorithm 4,
which solves the important subproblem, we are ready to
demonstrate the correctness and time complexity of the HW
algorithm.
Theorem 4.2. Algorithm 5 generates an optimal valid de-
fender strategy profile (p,v) in O(n4 log n) time.
Proof of Theorem 4.2: First, we will prove the correctness
of Algorithm 5 by contradiction. Assume that there is a valid
defender strategy profile (p∗,v∗) such that u(p∗,v∗) >
u(p,v). Let target i∗ be the attacker’s best response with
the defender strategy profile (p,v), and i∗′ be that with
(p∗,v∗). Since we enumerate all i∗ ∈ {0, 1, . . . , n − 1},
there is a case that i∗ = i∗′. According to Lemma 4.3, re-
placing every ev/ep ranger efforts on target i∗ with one vil-
lager will not cause utility to decrease. Therefore, we can
assume that v∗i∗ = vi∗′ after executing Lines 5 to 12 and
finding the maximum vi∗ that can be allocated to target i∗.

Based on Lemma B.3, when reaching Line 45, Algo-
rithm 4 generates a villager strategy v with a minimum
scw(v, u), which means we have exerted the maximum ef-
fect of villagers. So, we can assume that v = v∗. Af-
ter executing Algorithm 4, for any target i ∈ {i | pi >
0, Ua

i ̸= P a
i }, we know that Ua

i = ucur. If pi∗ = 0, com-
bined with vi∗ is optimal, we can derive that u(p,v) is op-
timal. If Ua

i∗ = P a
i∗ , we know that Ua

i∗ reaches its minimum
and thus Ud

i∗ reaches its maximum. If Ua
i∗ = ucur, since

u(p∗,v∗) > u(p,v) and i∗ = i∗′, we know that p∗i∗ > pi∗ .
However, if we move any ranger efforts from target i ̸= i∗

to target i∗, Ua
i will be larger than Ua

i∗ and target i∗ will not
be the attacker’s best response. Hence, it is not possible that
p∗i∗ > pi∗ , and thereby (p,v) is an optimal valid defender
strategy profile.

Then, we will prove the time complexity of Algorithm 5
is O(n4 log n). In Algorithm 5, there are totally O(n(1 +
log rv)) = O(n · log n) calls to Algorithm 1, and we have
proved in Theorem 4.1 that Algorithm 1 works in O(n).

Besides, Algorithm 5 calls Algorithm 4 O(n) times. In
Algorithm 4, on Lines 7 to 9, it takes O(n log n) time if we
sort and maintain Ua

i with heap. To optimize Algorithm 3,
we can first calculate the n2 number of utility drop before
swapping of tuple (ioutp, ioutv) before Line 11 in Algo-
rithm 4 and maintain the utility drops of every ioutv with
heap, which takes O(n log n) time. Every time we call Al-
gorithm 3, it takes O(n) time to find the minimum util-
ity drop by checking the minimum value of every ioutv,
and it takes O(n log n) to recalculate utility drop before
swapping related to ioutv and ioutp. Since we can move
one villager from target ioutv to target ioutp only when



wioutp > wioutv , there can be at most n2 swaps. Combined
with the fact there is at most n times that ucur − uδ < P a

max
and n times that ucur − uδ < unext, there are at most
O(n2 + 2n) = O(n2) rounds of iterations on Lines 11 to
44, and it takes O(n3 log n). Therefore, Algorithm 4 takes
O(n3 log n) time.

Therefore, Algorithm 5 works in O(n log n · n + n ·
n3 log n) = O(n4 log n) time.

C Missing Algorithm in Section 5
In this section, we will present an algorithm to resolve
RACPP with target-specific effectiveness, which is omitted
in Section 5. Similar to Algorithm 1, the general idea is to
greedily allocate the resources to other targets by maximiz-
ing the coverage each coverage can cover to ensure the best
response. The formal procedure is shown in Algorithm 6.

Algorithm 6: Checking whether a consistent strategy exists
Input: Input instance I, target i∗, strategy (pi∗ , vi∗) on i∗

Output: Whether a consistent strategy (p,v) exists
1: Compute Ua

i∗ using (3) with (pi∗ , vi∗).
2: if ∃i ∈ T,Ua

i∗ < P a
i then

3: return False.
4: Let (rpremain, r

v
remain)← (rp − pi∗ , r

v − vi∗).
5: for i ∈ {0, 1, . . . , n− 1} \ {i∗} do
6: Let cmin,i ← the minimum ci to ensure Ua

i ≤ Ua
i∗ .

7: Let cremain,i ← cmin,i.
8: Let δi ← min(cremain,i, e

v
i ).

9: for t ∈ {0, 1, . . . ,min(n, rvremain)− 1} do
10: Choose i with the largest δi (i ∈ T ).
11: Let cremain,i ← cremain,i − δi.
12: Let δi ← min(cremain,i, e

v
i ).

13: return
∑

i ̸=i∗ cremain,i ≤ rpremain · ep.

The algorithm maintains a variable cremain,i (Line 7) rep-
resenting the coverage still needed on target i after allocating
some villagers to it, and a variable δi (Line 8) representing
the amount of coverage the next villager allocated to target
i can handle. For each villager, the algorithm allocates them
to the target with the largest δi, trying to maximize the cov-
erage each villager can cover (Lines 9 to 12). Finally, the
algorithm checks whether there are enough ranger efforts to
cover the remaining coverage needs on all targets (Line 13).

D Missing Proofs in Section 5
D.1 Proof of Lemma 5.1
Lemma 5.1. Algorithm 6 returns True if and only if there
exists a valid defender strategy profile (p,v) such that pi∗ =
p, vi∗ = v and i∗ is the attacker’s best response.

Proof of Lemma 5.1: A valid defender strategy profile
(p,v) such that pi∗ = p, vi∗ = v and i∗ is the attacker’s
best response should satisfy (a) pi ∈ R≥0, (b) vi ∈ N, (c)∑

i∈T pi ≤ rp, (d)
∑

i∈T vi ≤ rv, (e) pi∗ = p, (f) vi∗ = v,
and (g) Ua

i∗ ≥ Ua
i (∀i ∈ T ).

Sufficiency. After Algorithm 6, we construct (p,v) as

pi =

{
cremain,i/e

p (i ̸= i∗)
p (i = i∗),

vi =

{
# times i is chosen on Line 10 (i ̸= i∗)
v (i = i∗).

We first prove that if Algorithm 1 returns True, the con-
structed (p,v) is a valid defender strategy profile that satis-
fies (a) to (g).

After executing Lines 5 to 8, cremain,i ≥ 0 since
cremain,i is set to cmin,i. The property still holds after exe-
cuting Lines 9 to 12 because cremain,i is set to cremain,i −
min(cremain,i, e

v
i ) ≥ 0. Hence, pi = cremain,i/e

p ≥ 0
(∀i ∈ T \ {i∗}). Combined with pi∗ = p ≥ 0, (a) holds.

Since vi (∀i ∈ T \ {i∗}) is similar to a counter, vi ∈ N
(∀i ∈ T \ {i∗}). Combined with vi∗ = v ∈ N, (b) holds.

From Line 13, we know that
∑

i ̸=i∗ cremain,i ≤ rpremain ·
ep = (rp−pi∗)·ep. Since pi = cremain,i/e

p (∀i ∈ T \{i∗}),
we can derive that

∑
i∈T pi ≤ rp and (c) holds.

On Lines 9 to 12, there are at most rvremain iterations, and
only one of the targets with the largest δj can be chosen
within one iteration. Hence,

∑
i̸=i∗ vi ≤ rvremain = rv−vi∗ .

Therefore,
∑

i∈T vi ≤ rv and (d) holds.
(e) and (f) hold since we set pi∗ and vi∗ to p and v.
On Line 6, we calculate a minimum coverage ci as cmin,i

to ensure Ua
i ≤ Ua

i∗ . After executing every iteration on Lines
9 to 12, cremain,i+vi ·evi ≥ cmin,i. Hence, pi ·ep+vi ·evi ≥
cmin,i (∀i ∈ T \ {i∗}) and (g) holds.

Therefore, there exists a valid defender strategy profile
(p,v) such that pi∗ = p, vi∗ = v and i∗ is the attacker’s
best response if Algorithm 6 returns True.

Necessity. We will prove the necessity of Algorithm 6
by contradiction. Assume that there exists a valid defender
strategy profile (p,v) such that pi∗ = p, vi∗ = v and i∗ is
the attacker’s best response, while Algorithm 6 returns False.

Although Algorithm 6 returns False, it generates a de-
fender strategy v′ for villagers, where v′i (∀i ∈ T \ {i∗})
is the number of times i is chosen on Line 10 and v′i∗ = v.
The strategy v′ satisfies properties (b), (d) and (f) for the
reasons similar to the sufficiency part.

Without loss of generality, we can assume both v and
v′ allocate all villagers to the targets. Hence, we know that∑

i ̸=i∗ vi =
∑

i̸=i∗ v
′
i.

On Lines 9 to 12, Algorithm 6 distributes villages to
targets with maximum δi, which is the effect one villager
can play on target i. Hence, v′ guarantees a maximum∑

i ̸=i∗(v
′
i · evi − cwi (v

′)) and we can know that
∑

i ̸=i∗(vi ·
evi − cwi (v)) ≤

∑
i̸=i∗(v

′
i · evi − cwi (v

′)).
Therefore, after villager distributions are set, the sum of

coverage needed to by filled with rangers over all targets∑
i ̸=i∗(cmin,i − v′i · evi + cwi (v

′)) ≤
∑

i ̸=i∗(cmin,i − vi ·
evi +cwi (v)). Since Algorithm 6 returns False, we derive that∑

i ̸=i∗(cmin,i− v′i · evi + cwi (v
′)) > (rp− p) · ep. Therefore,

we can conclude that (rp−p) ·ep <
∑

i̸=i∗(cmin,i−vi ·evi +
cwi (v

′)), which means there are no enough ranger efforts to
construct a p as the strategy for ranger in the valid defender
strategy profile (p,v). We get a contradiction.
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Figure 4: Average runtime of MILP, TDBS, and HW over 30 runs under different combinations of (n, rp, rv) where rv = 2 ·rp.
The error bars indicate the standard deviation. The shaded areas represent the ranges from the minimum to the 97th percentile.
We limit the maximum runtime for MILP in Fig. 4b to 7200 seconds.

D.2 Proof of Theorem 5.1
Theorem 5.1. Computing the maximum defender utility and
the optimal valid strategy profile of the RACPP problem with
villager-specific effectiveness is NP-hard.

Proof of Theorem 5.1: Consider the case where n = 2,
rp = 0, Ra

i = −P d
i = a, Rd

i = −P a
i = b for all i ∈ T , and∑

j∈V ej < 2.
To start with, we need to prove that in this case, max-

imum utility can be achieved when ej are uniformly dis-
tributed to the 2 targets if possible. We assume that there ex-
ists a partition which splits V into two sets S1 and S2 where∑

i∈S1
ei =

∑
i∈S2

ei, S1∩S2 = ∅ and S1∪S2 = V , while
maximum utility is reached with S′

1 and S′
2 respectively

allocated to the 2 targets, where
∑

i∈S′
1
ei >

∑
i∈S′

2
ei,

S′
1∩S′

2 = ∅ and S′
1∪S′

2 = V . Combined with
∑

j∈V ej < 2,
we can get that c′1 > c1 = c2 > c′2, thus Ud′

1 > Ud
1 = Ud

2 >
Ud′
2 and Ua′

1 < Ua
1 = Ua

2 < Ua′
2 . Therefore, the attacker

will choose to attack target 2 with best response, and thereby
defenders will obtain utility U ′d

2 with S′
1 and S′

2. Similarly,
defenders will get utility Ud

1 = Ud
2 with S1 and S2. Since

Ud
1 = Ud

2 > Ud′
2 , there is a contradiction. Hence, if ej can

be divided into two sets with equal sums, maximum utility
will be achieved with the corresponding strategy profile.

We show that the optimization program is NP-Hard using
a reduction from Partition Problem: Given a collection of
positive integers S = {a1, a2, . . . , am}, decide if there is a
partition of S to A and B such that

∑
a∈A a =

∑
b∈B b. Let

sum =
∑

ai∈S ai, |V | = m and ej = aj/sum. Then, solve
the RACPP problem in this case. Respectively compute the
sum of effectiveness allocated to the 2 targets within time
complexity O(m), and if the two sums are equal, there is
a partition in the Partition Problem; otherwise, there are no
such partition.

Hence, Partition Problem ≤k RACPP with villager-
specific effectiveness, and computing the maximum utility
and the optimal valid strategy profile is NP-Hard.

E Additional Experiments
In reality, the number of villagers and the number of rangers
are not always equal. To further validate our findings regard-
ing performance, we conducted a series of additional exper-

iments with a specific configuration where rv = 2 · rp, in
addition to maintaining the same experiment setup as de-
scribed in Section 6. This configuration was chosen to sim-
ulate scenarios where the number of villagers exceeds the
number of rangers, aligning with practical considerations in
wildlife conservation efforts.

Performance with different n. We let n = {5, 10, 30,
50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}, and
let rv = 2 ·rp = 2 · ⌊n3 ⌋. As shown in Fig. 4a, the runtime of
TDBS is significantly lower than the other two algorithms.

Performance with different rp, rv. We then fix n = 100
and let rv = 2 · rp be {0, 1, . . . , 50}. As shown in Fig. 4b,
runtimes of TDBS and HW are stable with different rp and
rv, while the performance of MILP is highly unstable.

The results confirm the conclusions in the main paper.
Specifically, TDBS is significantly faster with sufficient ac-
curacy, and TDBS and HW maintain greater stability.

F Additional Case Study
Distributions of three wildlife species are provided by do-
main experts. The distributions are processed, weighted and
scaled to get the value Ra

i of every target, which is shown is
Table 1.

Target Value Target Value Target Value
0 6.83 7 5.64 14 6.90
1 6.18 8 5.92 15 6.38
2 5.18 9 5.11 16 4.52
3 5.84 10 4.35 17 5.59
4 6.23 11 6.18 18 5.59
5 4.18 12 6.93 19 5.46
6 4.98 13 6.76 20 5.70

Table 1: Reward for poacher Ra
i used in the case study

For extra budget allocation, we calculate the optimal plan
of allocating the extra money with more (ep, ev) settings.
The results are demonstrated in Fig. 5. We can observe that
with ep/ev equal to 3, the preference to rangers or villagers
fluctuates when budget increases.
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Figure 5: Budget allocation with more settings
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Figure 6: Case study results considering terrain.

In practice, terrain has a great impact on defense effective-
ness. There is a basic domain knowledge that finding snares
on targets with higher slope variance is easier for defend-
ers. Hence, we repeat the case study in Section 7 with slope
taken into consideration.

First, we collect the terrain statistics of the forest farm,
compute the slope variance on every target, and classify the
targets into three categories (high, average and low slope
variance). Then, every (ep, ev) tuple is modified according
to the classification. For every (ep, ev) tuple, we set

edi =

 ed + 0.1 (i with high slope variance)
ed (i with average slope variance)
ed − 0.1 (i with low slope variance),

for d ∈ {p, v}.
Then, we generate strategy suggestions and budget allo-

cation with the terrain considered (ep, ev). The results are
shown in Fig. 6, which is more applicable because key fac-
tors in reality is taken into account. We can see from Fig. 6c
that the slight differences of defense effectiveness among
targets do not affect budget allocation when ep/ev is not
close to the cost ratio.


