

Improving Community-Participated Patrol for Anti-Poaching

Yufei Wu **Shanghai Jiao Tong University** **Carnegie Mellon University**

Yixuan (Even) Xu Xuming Zhang

World Wide Fund World Wide Fund For Nature China For Nature China Academy of SciencesDuo Liu Shibing Zhu **Heilongjiang**

Fei Fang **Carnegie Mellon University**

Anti-Poaching

- Security Games
	- A framework in game theory for optimizing resource allocation to protect valuable targets against adversarial threats.
- Anti-poaching
	- resources: rangers
	- targets: wildlife populations
	- adversaries: poachers

Anti-Poaching

- Security Games
	- A framework in game theory for optimizing resource allocation to protect valuable targets against adversarial threats.
- Anti-poaching
	- resources: rangers and **community members**
	- targets: wildlife populations
	- adversaries: poachers

RACPP

- Resources Allocation of Community Participated Patrol

- Two types of patrol resources
	- Professional rangers
		- distribute efforts among multiple targets
	- Community members (villagers)
		- patrol a single target (less flexible)

RACPP

- Resources Allocation of Community Participated Patrol

- Two types of patrol resources
	- Professional rangers
		- distribute efforts among multiple targets
	- Community members (villagers)
		- patrol a single target (less flexible)

RACPP

- **- Resources Allocation of Community Participated Patrol**
- \cdot *n* targets
- Rewards and penalties
	- If target i is successfully defended
		- defenders receive reward $R_i^{\mathbf{d}}$
		- the attacker receives penalty P_i^a
	- Otherwise
		- defenders receive penalty $P_i^{\mathbf{d}}$
		- the attacker receives reward R_i^a
- Expected utility of defenders and the attacker
- Goal
	- maximize the defenders' expected utility by adjusting defensive strategy

Mixed-Integer Linear Program Solution

- Stackelberg game
	- Defenders distribute resources
	- An attacker observes the distribution and attacks the target that maximizes his expected utility

Mixed-Integer Linear Program Solution

• Stackelberg game

- Defenders distribute resources
- An attacker observes the distribution and attacks the target that maximizes his expected utility

Mixed-Integer Linear Program Solution

• Stackelberg game

- Defenders distribute resources
- An attacker observes the distribution and attacks the target that maximizes his expected utility

Intuition

- Stone: thrown into the bucket as a whole
- Water: poured into the bucket at will
- Attacker attacks the bucket i* with the highest water level
- Goal: Adjust resources to lower the water level of bucket i^*

Intuition

- Stone: thrown into the bucket as a whole
- Water: poured into the bucket at will
- Attacker attacks the bucket i* with the highest water level
- Goal: Adjust resources to lower the water level of bucket i^*

Monotonicity

• Lemma: When bucket *i*^{*} is chosen to be attacked, if we put fewer stones and less water in bucket *i*^{*}, there still exists defensive strategy that makes bucket i^* be attacked.

Monotonicity

• Lemma: When bucket *i*^{*} is chosen to be attacked, if we replace water in bucket i^* with the stones of the same volume, there still exists defensive strategy that makes bucket *i*^{*} be attacked.

- Polynomial approximate algorithm
	- Accuracy: any desired ε
	- Complexity: $O(n^2 \log \frac{M}{n})$ $\mathcal{E}_{\mathcal{E}}$)
		- M is the maximum absolute reward or penalty

1. Iterate over all buckets as the attacked bucket i^*

2.6

• As the one with the highest water level

- 1. Iterate over all buckets as the attacked bucket i^*
- 2. Binary search on the max number of stones thrown into i^*
	- With enough spare resources for a defensive strategy to allow attacking bucket i^*

- 1. Iterate over all buckets as the attacked bucket i^*
- 2. Binary search on the max number of stones thrown into i^*
- 3. Binary search on the amount of water poured into i^*
	- To the desired accuracy ε
	- With enough spare resources for a defensive strategy to allow attacking bucket i^*

- 1. Iterate over all buckets as the attacked bucket i^*
	- As the one with the highest water level
- 2. Binary search on the max number of stones thrown into i^*
	- With enough spare resources for a defensive strategy to allow attacking bucket i^*
- 3. Binary search on the amount of water poured into i^*
	- To the desired accuracy ε
	- With enough spare resources for a defensive strategy to allow attacking bucket i^*

Complexity:
$$
O(n^2 \log \frac{M}{\varepsilon})
$$

- Polynomial exact algorithm
	- Accuracy: precise
	- Complexity: $O(n^4 \log n)$

1. Iterate over all buckets as the attacked bucket i^*

2.6

• As the one with the highest water level

- 1. Iterate over all buckets as the attacked bucket i^*
- 2. Binary search on the max number of stones thrown into i^*
	- With enough spare resources for a defensive strategy to allow attacking bucket i^*

- 1. Iterate over all buckets as the attacked bucket i^*
- 2. Binary search on the max number of stones thrown into i^*
- 3. Greedy for spare stones
	- Throw into the bucket with the highest water level except bucket i^*

- 1. Iterate over all buckets as the attacked bucket i^*
- 2. Binary search on the max number of stones thrown into i^*
- 3. Greedy for spare stones
- 4. Waterfilling to a critical point and trigger a swap

with equal volume

- 1. Iterate over all buckets as the attacked bucket i^*
- 2. Binary search on the max number of stones thrown into i^*
- 3. Greedy for spare stones
- 4. Waterfilling to a critical point and trigger a swap
- 5. Finish Waterfilling

- 1. Iterate over all buckets as the attacked bucket i^*
	- As the one with the highest water level
- 2. Binary search on the max number of stones thrown into i^*
	- With enough spare resources for a defensive strategy to allow attacking bucket i^*
- 3. Greedy for spare stones
	- Throw into the bucket with the highest water level except bucket i^*
- 4. Waterfilling to a critical point and trigger a swap
	- With equal volume
- 5. Finish Waterfilling

Complexity: $O(n^4 \log n)$

Extensions for Practical Constraints

RACPP with Target-Specific Effectiveness

A stone has different volumes in each bucket

Adapted TDBS with unchanged complexity

Complexity: $O(n^2 \log \frac{M}{a})$ $\mathcal{E}_{\mathcal{L}}$)

Extensions for Practical Constraints

RACPP with Villager-Specific Effectiveness

Stones have different volumes

NP-Hard

Experiments

- TDBS
	- significantly faster
	- accurate enough for practical applications

- TDBS and HW
	- more stable

Case Study on Anti-poaching

- A protected area in Northeast China
	- Home to the Manchurian tiger
	- 21 2km×2km regions
	- Defended by rangers and villagers

Case Study on Anti-poaching

Ratio of advice to increase or decrease resources on each target

Distribution of coverage change on each target

25.9% Defenders' utility To Average: 83.1% 152.6% To

Case Study on Anti-poaching

Cost ratio **V.S.** Effectiveness ratio Preference for rangers or villagers

Our Contributions

- We propose a novel game-theoretic model for communityparticipated patrol
- We introduce two algorithms
	- A polynomial approximate algorithm: Two-Dimensional Binary Search
	- A polynomial exact algorithm: Hybrid Waterfilling
- We conduct a detailed case study
	- On a protected tiger habitat in Northeast China