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Anti-Poaching

• Security Games
• A framework in game theory for optimizing resource allocation to 

protect valuable targets against adversarial threats.

• Anti-poaching
• resources: rangers

• targets: wildlife populations

• adversaries: poachers



Anti-Poaching

• Security Games
• A framework in game theory for optimizing resource allocation to 

protect valuable targets against adversarial threats.

• Anti-poaching
• resources: rangers and community members

• targets: wildlife populations

• adversaries: poachers



RACPP 
- Resources Allocation of Community Participated Patrol

• Two types of patrol resources
• Professional rangers

• distribute efforts among multiple targets

• Community members (villagers)
• patrol a single target (less flexible)
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• Two types of patrol resources
• Professional rangers

• distribute efforts among multiple targets

• Community members (villagers)
• patrol a single target (less flexible)

RACPP 
- Resources Allocation of Community Participated Patrol



• 𝑛 targets

• Rewards and penalties
• If target 𝑖 is successfully defended

• defenders receive reward 𝑅𝑖
d

• the attacker receives penalty 𝑃𝑖
a

• Otherwise

• defenders receive penalty 𝑃𝑖
d

• the attacker receives reward 𝑅𝑖
a

• Expected utility of defenders and the attacker

• Goal
• maximize the defenders’ expected utility by adjusting defensive strategy

RACPP 
- Resources Allocation of Community Participated Patrol



Mixed-Integer Linear Program Solution

• Stackelberg game
• Defenders distribute resources

• An attacker observes the distribution and attacks the target that 
maximizes his expected utility
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Mixed-Integer Linear Program Solution

• Stackelberg game
• Defenders distribute resources

• An attacker observes the distribution and attacks the target that 
maximizes his expected utility

MILP
Exponential

Time



Intuition
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villager
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Intuition

• Stone: thrown into the bucket as a whole

• Water: poured into the bucket at will

• Attacker attacks the bucket 𝑖∗ with the highest water level

• Goal: Adjust resources to lower the water level of bucket 𝑖∗
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Intuition
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• Stone: thrown into the bucket as a whole

• Water: poured into the bucket at will

• Attacker attacks the bucket 𝑖∗ with the highest water level

• Goal: Adjust resources to lower the water level of bucket 𝑖∗



Monotonicity

• Lemma: When bucket 𝑖∗ is chosen to be attacked, if we 
put fewer stones and less water in bucket 𝑖∗, there still 
exists defensive strategy that makes bucket 𝑖∗ be attacked.
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Monotonicity

• Lemma: When bucket 𝑖∗ is chosen to be attacked, if we replace 
water in bucket 𝑖∗ with the stones of the same volume, there still 
exists defensive strategy that makes bucket 𝑖∗ be attacked.
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Two-Dimensional Binary Search

• Polynomial approximate algorithm
• Accuracy: any desired 𝜀

• Complexity: 𝑂(𝑛2 log
𝑀

𝜀
)

• 𝑀 is the maximum absolute reward or penalty



Two-Dimensional Binary Search

1. Iterate over all buckets as the attacked bucket 𝑖∗

• As the one with the highest water level

3
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Two-Dimensional Binary Search

1. Iterate over all buckets as the attacked bucket 𝑖∗

2. Binary search on the max number of stones thrown into 𝑖∗

• With enough spare resources for a defensive strategy to allow attacking bucket 𝑖∗
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Two-Dimensional Binary Search

1. Iterate over all buckets as the attacked bucket 𝑖∗

2. Binary search on the max number of stones thrown into 𝑖∗

3. Binary search on the amount of water poured into 𝑖∗

• To the desired accuracy 𝜀

• With enough spare resources for a defensive strategy to allow attacking bucket 𝑖∗

Spare:

4

2.2

Spare:

4

2.2 - 𝜺

1
2
3

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

0.4

1
2
3

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

0.4 + 𝜺



Two-Dimensional Binary Search

1. Iterate over all buckets as the attacked bucket 𝑖∗

• As the one with the highest water level

2. Binary search on the max number of stones thrown into 𝑖∗

• With enough spare resources for a defensive strategy to allow attacking bucket 𝑖∗

3. Binary search on the amount of water poured into 𝑖∗

• To the desired accuracy 𝜀

• With enough spare resources for a defensive strategy to allow attacking bucket 𝑖∗

Complexity: 𝑂(𝑛2 log
𝑀

𝜀
)



Hybrid Waterfilling

• Polynomial exact algorithm
• Accuracy: precise

• Complexity: 𝑂(𝑛4 log 𝑛)



Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket 𝑖∗

• As the one with the highest water level
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Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket 𝑖∗

2. Binary search on the max number of stones thrown into 𝑖∗

• With enough spare resources for a defensive strategy to allow attacking bucket 𝑖∗
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Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket 𝑖∗

2. Binary search on the max number of stones thrown into 𝑖∗

3. Greedy for spare stones
• Throw into the bucket with the highest water level except bucket 𝑖∗

Spare:
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Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket 𝑖∗

2. Binary search on the max number of stones thrown into 𝑖∗

3. Greedy for spare stones

4. Waterfilling to a critical point and trigger a swap

Spare:
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Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket 𝑖∗

2. Binary search on the max number of stones thrown into 𝑖∗

3. Greedy for spare stones

4. Waterfilling to a critical point and trigger a swap

5. Finish Waterfilling
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Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket 𝑖∗

• As the one with the highest water level

2. Binary search on the max number of stones thrown into 𝑖∗

• With enough spare resources for a defensive strategy to allow attacking bucket 𝑖∗

3. Greedy for spare stones
• Throw into the bucket with the highest water level except bucket 𝑖∗

4. Waterfilling to a critical point and trigger a swap
• With equal volume

5. Finish Waterfilling
Complexity: 𝑂(𝑛4 log 𝑛)



Extensions for Practical Constraints

RACPP with Target-Specific Effectiveness

A stone has different volumes in each bucket

Adapted TDBS with unchanged complexity

Complexity: 𝑂(𝑛2 log
𝑀

𝜀
)
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Extensions for Practical Constraints

RACPP with Villager-Specific Effectiveness

Stones have different volumes
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Experiments

• TDBS
• significantly faster
• accurate enough for 

practical applications

• TDBS and HW
• more stable



Case Study on Anti-poaching

• A protected area in Northeast China
• Home to the Manchurian tiger

• 21 2km×2km regions

• Defended by rangers and villagers



Case Study on Anti-poaching

Ratio of advice to increase or decrease 
resources on each target

Distribution of coverage change on 
each target

25.9%

Defenders’ utility Average: 83.1%

152.6%

To



Case Study on Anti-poaching

Cost ratio Effectiveness ratioV.S.

Preference for rangers or villagers



Our Contributions

• We propose a novel game-theoretic model for community-
participated patrol

• We introduce two algorithms
• A polynomial approximate algorithm: Two-Dimensional Binary Search

• A polynomial exact algorithm: Hybrid Waterfilling

• We conduct a detailed case study 
• On a protected tiger habitat in Northeast China


