
Improving Community-Participated Patrol for Anti-Poaching

Yixuan (Even) Xu
Carnegie Mellon 

University

Fei Fang
Carnegie Mellon 

University

Yufei Wu
Shanghai Jiao 

Tong University

Xuming Zhang
World Wide Fund 
For Nature China

Duo Liu
World Wide Fund 
For Nature China

Shibing Zhu
Heilongjiang 

Academy of Sciences



Anti-Poaching

• Security Games
• A framework in game theory for optimizing resource allocation to 

protect valuable targets against adversarial threats.

• Anti-poaching
• resources: rangers

• targets: wildlife populations

• adversaries: poachers



Anti-Poaching

• Security Games
• A framework in game theory for optimizing resource allocation to 

protect valuable targets against adversarial threats.

• Anti-poaching
• resources: rangers and community members

• targets: wildlife populations

• adversaries: poachers



RACPP 
- Resources Allocation of Community Participated Patrol

• Two types of patrol resources
• Professional rangers

• distribute efforts among multiple targets

• Community members (villagers)
• patrol a single target (less flexible)



2

1

0.9

0.4

0.7

• Two types of patrol resources
• Professional rangers

• distribute efforts among multiple targets

• Community members (villagers)
• patrol a single target (less flexible)

RACPP 
- Resources Allocation of Community Participated Patrol



• 𝑛 targets

• Rewards and penalties
• If target 𝑖 is successfully defended

• defenders receive reward 𝑅𝑖
d

• the attacker receives penalty 𝑃𝑖
a

• Otherwise

• defenders receive penalty 𝑃𝑖
d

• the attacker receives reward 𝑅𝑖
a

• Expected utility of defenders and the attacker

• Goal
• maximize the defenders’ expected utility by adjusting defensive strategy

RACPP 
- Resources Allocation of Community Participated Patrol



Mixed-Integer Linear Program Solution

• Stackelberg game
• Defenders distribute resources

• An attacker observes the distribution and attacks the target that 
maximizes his expected utility



Mixed-Integer Linear Program Solution

• Stackelberg game
• Defenders distribute resources

• An attacker observes the distribution and attacks the target that 
maximizes his expected utility

MILP



Mixed-Integer Linear Program Solution

• Stackelberg game
• Defenders distribute resources

• An attacker observes the distribution and attacks the target that 
maximizes his expected utility

MILP
Exponential

Time



Intuition

ranger

villager

𝑅𝑖
a

𝑃𝑖
a

target
the 𝑖-th bucket in 
attacker’s view

water

stone

attacker’s utility water level



Intuition

• Stone: thrown into the bucket as a whole

• Water: poured into the bucket at will

• Attacker attacks the bucket 𝑖∗ with the highest water level

• Goal: Adjust resources to lower the water level of bucket 𝑖∗

𝑅1
a

𝑃1
a

1

𝑅0
a

𝑃0
a

1

1.6

𝑅2
a

𝑃2
a

1

2

0.4



Intuition

𝑅1
a

𝑃1
a

1

𝑅0
a

𝑃0
a

1

1.6

𝑅2
a

𝑃2
a

1

2

0.4

• Stone: thrown into the bucket as a whole

• Water: poured into the bucket at will

• Attacker attacks the bucket 𝑖∗ with the highest water level

• Goal: Adjust resources to lower the water level of bucket 𝑖∗



Monotonicity

• Lemma: When bucket 𝑖∗ is chosen to be attacked, if we 
put fewer stones and less water in bucket 𝑖∗, there still 
exists defensive strategy that makes bucket 𝑖∗ be attacked.

Spare:

3 4
1

𝑅0
𝑎 𝑅1

𝑎

𝑃0
𝑎

𝑃1
𝑎

2

𝑅0
𝑎 𝑅1

𝑎

𝑃0
𝑎

𝑃1
𝑎

1
Spare:

3 4

2



Monotonicity

• Lemma: When bucket 𝑖∗ is chosen to be attacked, if we replace 
water in bucket 𝑖∗ with the stones of the same volume, there still 
exists defensive strategy that makes bucket 𝑖∗ be attacked.

1
𝑅0
𝑎 𝑅1

𝑎

𝑃0
𝑎

𝑃1
𝑎

2

𝑅0
𝑎 𝑅1

𝑎

𝑃0
𝑎

𝑃1
𝑎

1
Spare:

3 4

Spare:

3 4

2



Two-Dimensional Binary Search

• Polynomial approximate algorithm
• Accuracy: any desired 𝜀

• Complexity: 𝑂(𝑛2 log
𝑀

𝜀
)

• 𝑀 is the maximum absolute reward or penalty



Two-Dimensional Binary Search

1. Iterate over all buckets as the attacked bucket 𝑖∗

• As the one with the highest water level

3
Resources:

4

21
2.6

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

𝑅0
𝑎

𝑅1
𝑎

𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎



Two-Dimensional Binary Search

1. Iterate over all buckets as the attacked bucket 𝑖∗

2. Binary search on the max number of stones thrown into 𝑖∗

• With enough spare resources for a defensive strategy to allow attacking bucket 𝑖∗

Spare:

4

2.6

Spare:

2.6

1
2
3

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

1
2
3
4

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎



Two-Dimensional Binary Search

1. Iterate over all buckets as the attacked bucket 𝑖∗

2. Binary search on the max number of stones thrown into 𝑖∗

3. Binary search on the amount of water poured into 𝑖∗

• To the desired accuracy 𝜀

• With enough spare resources for a defensive strategy to allow attacking bucket 𝑖∗

Spare:

4

2.2

Spare:

4

2.2 - 𝜺

1
2
3

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

0.4

1
2
3

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

0.4 + 𝜺



Two-Dimensional Binary Search

1. Iterate over all buckets as the attacked bucket 𝑖∗

• As the one with the highest water level

2. Binary search on the max number of stones thrown into 𝑖∗

• With enough spare resources for a defensive strategy to allow attacking bucket 𝑖∗

3. Binary search on the amount of water poured into 𝑖∗

• To the desired accuracy 𝜀

• With enough spare resources for a defensive strategy to allow attacking bucket 𝑖∗

Complexity: 𝑂(𝑛2 log
𝑀

𝜀
)



Hybrid Waterfilling

• Polynomial exact algorithm
• Accuracy: precise

• Complexity: 𝑂(𝑛4 log 𝑛)



Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket 𝑖∗

• As the one with the highest water level

3
Resources:

4

21
2.6

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

𝑅0
𝑎

𝑅1
𝑎

𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎



Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket 𝑖∗

2. Binary search on the max number of stones thrown into 𝑖∗

• With enough spare resources for a defensive strategy to allow attacking bucket 𝑖∗

Spare:

2.6

3 4

2

Spare:

2.6

3 4
1

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

1
2



Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket 𝑖∗

2. Binary search on the max number of stones thrown into 𝑖∗

3. Greedy for spare stones
• Throw into the bucket with the highest water level except bucket 𝑖∗

Spare:

2.6

1
𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

2
3

4



Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket 𝑖∗

2. Binary search on the max number of stones thrown into 𝑖∗

3. Greedy for spare stones

4. Waterfilling to a critical point and trigger a swap

Spare:

with equal volume

Spare:𝑅0
𝑎

𝑅1
𝑎

𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

1
2
3

4
1

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

2
3
4



Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket 𝑖∗

2. Binary search on the max number of stones thrown into 𝑖∗

3. Greedy for spare stones

4. Waterfilling to a critical point and trigger a swap

5. Finish Waterfilling

Spare:
1

𝑅0
𝑎 𝑅1

𝑎
𝑅2
𝑎

𝑃0
𝑎

𝑃1
𝑎

𝑃2
𝑎

2
3
4



Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket 𝑖∗

• As the one with the highest water level

2. Binary search on the max number of stones thrown into 𝑖∗

• With enough spare resources for a defensive strategy to allow attacking bucket 𝑖∗

3. Greedy for spare stones
• Throw into the bucket with the highest water level except bucket 𝑖∗

4. Waterfilling to a critical point and trigger a swap
• With equal volume

5. Finish Waterfilling
Complexity: 𝑂(𝑛4 log 𝑛)



Extensions for Practical Constraints

RACPP with Target-Specific Effectiveness

A stone has different volumes in each bucket

Adapted TDBS with unchanged complexity

Complexity: 𝑂(𝑛2 log
𝑀

𝜀
)

𝑅0
𝑎 𝑅1

𝑎 𝑅2
𝑎

𝑃0
𝑎 𝑃1

𝑎 𝑃2
𝑎1

1
1



Extensions for Practical Constraints

RACPP with Villager-Specific Effectiveness

Stones have different volumes

𝑅0
𝑎 𝑅0

𝑎 𝑅0
𝑎

𝑃0
𝑎 𝑃0

𝑎 𝑃0
𝑎2

3
1

NP-Hard



Experiments

• TDBS
• significantly faster
• accurate enough for 

practical applications

• TDBS and HW
• more stable



Case Study on Anti-poaching

• A protected area in Northeast China
• Home to the Manchurian tiger

• 21 2km×2km regions

• Defended by rangers and villagers



Case Study on Anti-poaching

Ratio of advice to increase or decrease 
resources on each target

Distribution of coverage change on 
each target

25.9%

Defenders’ utility Average: 83.1%

152.6%

To



Case Study on Anti-poaching

Cost ratio Effectiveness ratioV.S.

Preference for rangers or villagers



Our Contributions

• We propose a novel game-theoretic model for community-
participated patrol

• We introduce two algorithms
• A polynomial approximate algorithm: Two-Dimensional Binary Search

• A polynomial exact algorithm: Hybrid Waterfilling

• We conduct a detailed case study 
• On a protected tiger habitat in Northeast China


