

Improving Community-Participated Patrol for Anti-Poaching

Yufei Wu **Shanghai Jiao Tong University** **Carnegie Mellon** University

Yixuan (Even) Xu Xuming Zhang

Duo Liu Shibing Zhu Heilongjiang World Wide Fund World Wide Fund For Nature China For Nature China Academy of Sciences

Fei Fang **Carnegie Mellon** University

Anti-Poaching

- Security Games
 - A framework in game theory for optimizing resource allocation to protect valuable targets against adversarial threats.
- Anti-poaching
 - resources: rangers
 - targets: wildlife populations
 - adversaries: poachers

Anti-Poaching

- Security Games
 - A framework in game theory for optimizing resource allocation to protect valuable targets against adversarial threats.
- Anti-poaching
 - resources: rangers and community members
 - targets: wildlife populations
 - adversaries: poachers

RACPP

- Resources Allocation of Community Participated Patrol

- Two types of patrol resources
 - Professional rangers
 - distribute efforts among multiple targets
 - Community members (villagers)
 - patrol a single target (less flexible)

RACPP

- Resources Allocation of Community Participated Patrol

- Two types of patrol resources
 - Professional rangers
 - distribute efforts among multiple targets
 - Community members (villagers)
 - patrol a single target (less flexible)

RACPP

- Resources Allocation of Community Participated Patrol
- *n* targets
- Rewards and penalties
 - If target *i* is successfully defended
 - defenders receive reward R_i^d
 - the attacker receives penalty P_i^a
 - Otherwise
 - defenders receive penalty P_i^{d}
 - the attacker receives reward R_i^a
- Expected utility of defenders and the attacker
- Goal
 - maximize the defenders' expected utility by adjusting defensive strategy

Mixed-Integer Linear Program Solution

- Stackelberg game
 - Defenders distribute resources
 - An attacker observes the distribution and attacks the target that maximizes his expected utility

Mixed-Integer Linear Program Solution

• Stackelberg game

- Defenders distribute resources
- An attacker observes the distribution and attacks the target that maximizes his expected utility

Mixed-Integer Linear Program Solution

- Stackelberg game
 - Defenders distribute resources
 - An attacker observes the distribution and attacks the target that maximizes his expected utility

Intuition

- Stone: thrown into the bucket as a whole
- Water: poured into the bucket at will
- Attacker attacks the bucket *i*^{*} with the highest water level
- Goal: Adjust resources to lower the water level of bucket i^*

Intuition

- Stone: thrown into the bucket as a whole
- Water: poured into the bucket at will
- Attacker attacks the bucket *i*^{*} with the highest water level
- Goal: Adjust resources to lower the water level of bucket i^*

Monotonicity

• Lemma: When bucket *i*^{*} is chosen to be attacked, if we put fewer stones and less water in bucket *i*^{*}, there still exists defensive strategy that makes bucket *i*^{*} be attacked.

Monotonicity

• Lemma: When bucket *i*^{*} is chosen to be attacked, if we replace water in bucket *i*^{*} with the stones of the same volume, there still exists defensive strategy that makes bucket *i*^{*} be attacked.

- Polynomial approximate algorithm
 - Accuracy: any desired ε
 - Complexity: $O(n^2 \log \frac{M}{\epsilon})$
 - *M* is the maximum absolute reward or penalty

1. Iterate over all buckets as the attacked bucket i^*

2.6

• As the one with the highest water level

- 1. Iterate over all buckets as the attacked bucket i^*
- 2. Binary search on the max number of stones thrown into i^*
 - With enough spare resources for a defensive strategy to allow attacking bucket i^*

- 1. Iterate over all buckets as the attacked bucket i^*
- 2. Binary search on the max number of stones thrown into i^*
- 3. Binary search on the amount of water poured into i^*
 - To the desired accuracy ε
 - With enough spare resources for a defensive strategy to allow attacking bucket i^*

- 1. Iterate over all buckets as the attacked bucket i^*
 - As the one with the highest water level
- 2. Binary search on the max number of stones thrown into i^*
 - With enough spare resources for a defensive strategy to allow attacking bucket i^*
- 3. Binary search on the amount of water poured into i^*
 - To the desired accuracy ε
 - With enough spare resources for a defensive strategy to allow attacking bucket i^*

Complexity:
$$O(n^2 \log \frac{M}{\varepsilon})$$

- Polynomial exact algorithm
 - Accuracy: precise
 - Complexity: $O(n^4 \log n)$

1. Iterate over all buckets as the attacked bucket i^*

2.6

• As the one with the highest water level

- 1. Iterate over all buckets as the attacked bucket i^*
- 2. Binary search on the max number of stones thrown into i^*
 - With enough spare resources for a defensive strategy to allow attacking bucket i^*

- 1. Iterate over all buckets as the attacked bucket i^*
- 2. Binary search on the max number of stones thrown into i^*
- 3. Greedy for spare stones
 - Throw into the bucket with the highest water level except bucket i^*

- 1. Iterate over all buckets as the attacked bucket i^*
- 2. Binary search on the max number of stones thrown into i^*
- 3. Greedy for spare stones
- 4. Waterfilling to a critical point and trigger a swap

with equal volume

- 1. Iterate over all buckets as the attacked bucket i^*
- 2. Binary search on the max number of stones thrown into i^*
- 3. Greedy for spare stones
- 4. Waterfilling to a critical point and trigger a swap
- 5. Finish Waterfilling

- 1. Iterate over all buckets as the attacked bucket i^*
 - As the one with the highest water level
- 2. Binary search on the max number of stones thrown into i^*
 - With enough spare resources for a defensive strategy to allow attacking bucket i^*
- 3. Greedy for spare stones
 - Throw into the bucket with the highest water level except bucket i^\ast
- 4. Waterfilling to a critical point and trigger a swap
 - With equal volume
- 5. Finish Waterfilling

Complexity: $O(n^4 \log n)$

Extensions for Practical Constraints

RACPP with Target-Specific Effectiveness

A stone has different volumes in each bucket

Adapted TDBS with unchanged complexity

Complexity: $O(n^2 \log \frac{M}{\varepsilon})$

Extensions for Practical Constraints

RACPP with Villager-Specific Effectiveness

Stones have different volumes

NP-Hard

Experiments

- TDBS
 - significantly faster
 - accurate enough for practical applications

- TDBS and HW
 - more stable

Case Study on Anti-poaching

- A protected area in Northeast China
 - Home to the Manchurian tiger
 - 21 2km×2km regions
 - Defended by rangers and villagers

Case Study on Anti-poaching

Ratio of advice to increase or decrease resources on each target

Distribution of coverage change on each target

Defenders' utility

Average: 83.1%

25.9%

152.6%

To

Case Study on Anti-poaching

Cost ratio **V.S.** Effectiveness ratio Preference for rangers or villagers

Our Contributions

- We propose a novel game-theoretic model for communityparticipated patrol
- We introduce two algorithms
 - A polynomial approximate algorithm: Two-Dimensional Binary Search
 - A polynomial exact algorithm: Hybrid Waterfilling
- We conduct a detailed case study
 - On a protected tiger habitat in Northeast China