

Improving Community-Participated Patrol for Anti-Poaching

Yufei Wu¹, Yixuan Even Xu², Xuming Zhang³, Duo Liu³, Shibing Zhu⁴, Fei Fang² ¹Shanghai Jiao Tong University, ²Carnegie Mellon University, ³World Wide Fund For Nature China, ⁴Heilongjiang Academy of Sciences

Resources Allocation of Community Participated Patrol

hhhi

Professional rangers: distribute efforts among multiple targets **Community members:** patrol a single target **Goal:** maximize the defenders' expected

3. Binary search on the amount of water poured into *i**

To any desired accuracy

M is the maximum absolute reward or penalty

utility by adjusting defensive strategy

Mixed-Integer Linear Program Solution

Stackelberg Game:

Integer Constraint MILP **Exponential Time**

Monotonicity

Stone: thrown into buckets as a whole Water: poured into buckets at will **Goal:** Adjust resources to lower the water level of bucket *i*^{*} (the one with the highest water level)

Lemma: When bucket *i*^{*} is chosen to be attacked, reducing its stones and water still allows a defensive strategy that makes it be attacked.

Hybrid Waterfilling

1. Iterate over all buckets as the attacked bucket *i** 2. Binary search on the max number of stones thrown into i^* 3. Greedy for spare stones

4. Waterfilling to a critical point and trigger a swap 5. Finish Waterfilling

with equal volume

Complexity: $O(n^4 \log n)$ Exact

Lemma: When bucket *i*^{*} is chosen to be attacked, replacing its water with stones of equal volume still allows a defensive strategy that makes it be attacked.

Two-Dimensional Binary Search

- 1. Iterate over all buckets as the attacked bucket *i**
- 2. Binary search on the max number of stones thrown into i^*

- The runtime of TDBS is significantly lower.
- 2. TDBS results at precision 10⁻³ are accurate enough for practical use.
- 3. The performance of TDBS and HW are more stable than MILP.

We applied RACPP to a protected area in Northeast China

If the generated defensive strategies are followed, defenders' utility

