

Learning Coalition Structures with Games

Yixuan (Even) Xu **Tsinghua University** Chun Kai Ling Columbia University Fei Fang Carnegie Mellon University

Coalition Structures

Coalition Structures

Coalition Structure Learning (CSL)

- **Coalition:** A nonempty subset of the agents, in which
 - The agents coordinate their actions
 - The agents have common interests
- **Coalition Structure:** A set partition of the agents {1, 2, …, *n*}
 - Each set is a separate coalition
 - **Behavior Model in a Game:** Each coalition **act as a joint player** whose actual utility equals the **total utilities of its members**
- **Coalition Structure Learning (CSL):** Recover the unknown coalition structure by observing interactions in designed games

Interactive Model

Single-Bit Observation Oracle

- **Model:** The algorithm queries a game *G* and a strategy profile Σ , and the agents answer whether Σ is a **Nash Equilibrium** in *G*
 - The focus of this paper
 - Easy to compute for the agents
 - One bit of information per query
- **Theorem 3.1:** Any algorithm for CSL must interact at least $n \log_2 n O(n \log_2 \log_2 n)$ rounds with the agents
 - We need this many bits of information to distinguish between answers

Types of Games

- What kind of games can the algorithm design?
 - Natural choice: Normal form games
 - The **most general** one, thus the **easiest** for the algorithm
 - Succinct games: Congestion games, graphical games
 - More related to practice: Auctions
- We study **all** the above settings in this paper
 - And show **asymptotically optimal algorithms** for all of them
 - We mainly focus on the **normal form game** setting in these slides

How to Distinguish Between the Two?

Normal Form Gadgets

• Normal Form Gadgets: A normal form game where a specific pair of agents (*x*, *y*) play the Prisoner's Dilemma, and other agents only have one action that does not affect the game

	Cy	Dy
C_x	(3, 3)	(0, 5)
$D_{\mathcal{X}}$	(5,0)	(1, 1)

• Lemma 3.1: (D_x, D_y) is a Nash Equilibrium if and only if x and y are not in the same coalition

Product of Normal Form Gadgets

- **Product of Normal Form Gadgets:** Running several normal form gadgets simultaneously as a **single normal form game**
 - Agents **individually act** in each gadget
 - An agent's utility equals the **sum of the agent's utility** in each gadget
- Lemma 3.2: Always defect is a Nash Equilibrium iff the chosen pair are not in the same coalition in each gadget

Iterative Grouping (IG)

- Determine each agent's coalition one by one
- For agent *i*, let all others play **normal form gadgets** with *i*
 - If always defect is an NE, then agent *i* has **no other teammates**
 - Otherwise, we know that **someone is in the same coalition** with *i*
- Run a **binary search** to locate one teammate *j* of *i*
 - **Merge** *i* and *j* as one joint player
 - Proceed iteratively until *i*'s coalition is finalized

IG is Optimal

- **Theorem 3.2:** IG solves CSL with $n \log_2 n + 3n$ rounds
- **Recall Theorem 3.1:** Any algorithm for CSL must interact at least $n \log_2 n O(n \log_2 \log_2 n)$ rounds with the agents
- IG is **optimal** up to low order terms

Extension to AuctionCSL

- AuctionCSL: The algorithm can only design auctions
- Format: Second-price auctions with personalized reserves
 - Each agent *i* has a valuation v_i and a reserve price r_i
 - The highest bidder wins, with *price* = *max*{*second bid, reserve price*}
- To better simulate the practice, we further restrict the algorithm
 - The algorithm can only design the **reserve prices**
 - The **valuations** are random each query, but the algorithm sees them

Auction Gadgets

Auction Gadgets

If Agent 1 is NOT Cooperating with 2

Truthful bidding IS a Nash Equilibrium

If Agent 1 IS Cooperating with 2

Truthful bidding is NOT a Nash Equilibrium

AuctionIG

- AuctionIG: Our algorithm built upon auction gadgets
- **Theorem 4.1:** In expectation, AuctionIG solves AuctionCSL with $(4.16 + o(1))n \log_2 n$ rounds
- AuctionIG is **optimal** asymptotically

Summary of Contributions

- We propose and formally **model** the CSL problem
- We study the single-bit observation setting **theoretically**
 - We propose an **optimal algorithm** in the normal form game setting
 - We extend the algorithm to other settings, including graphical games, congestion games, and auctions, while preserving optimality
- We conduct **experiments** to complement our theory

Acknowledgements: This work was supported in part by NSF grant IIS-2046640 (CAREER), IIS-2200410, and Sloan Research Fellowship. Additionally, we thank Davin Choo and Hanrui Zhang for helpful discussions about this work.