Learning Coalition Structures with Games Yixuan Even Xu Chun Kai Ling Fei Fang

Coalition Structure Learning (CSL)

hhhi

Coalition: A nonempty subset of the agents, in which the agents **coordinate their actions** and have common interests.

Tsinghua

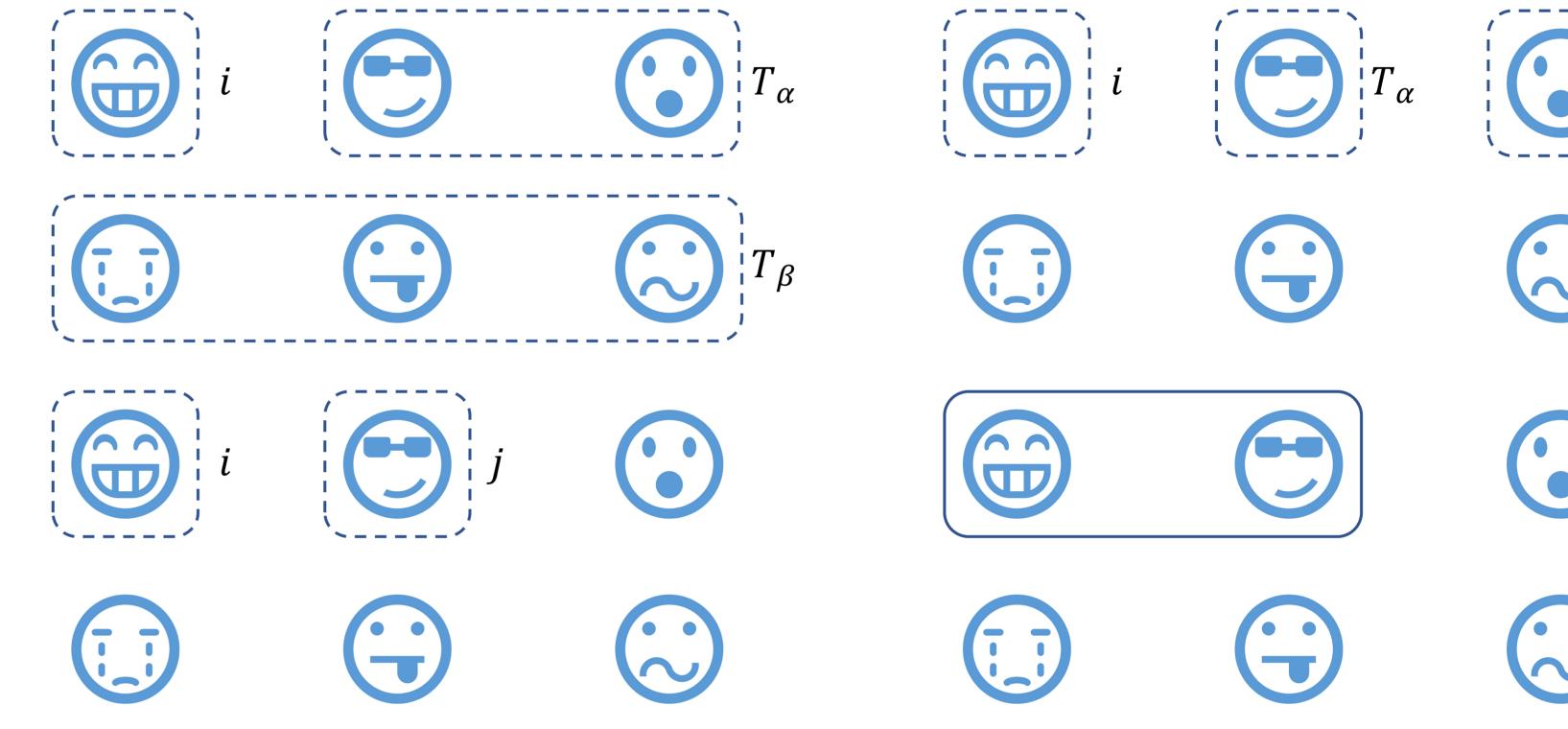
Coalition Structure: A set partition of the agents $\{1, 2, \dots, n\}$

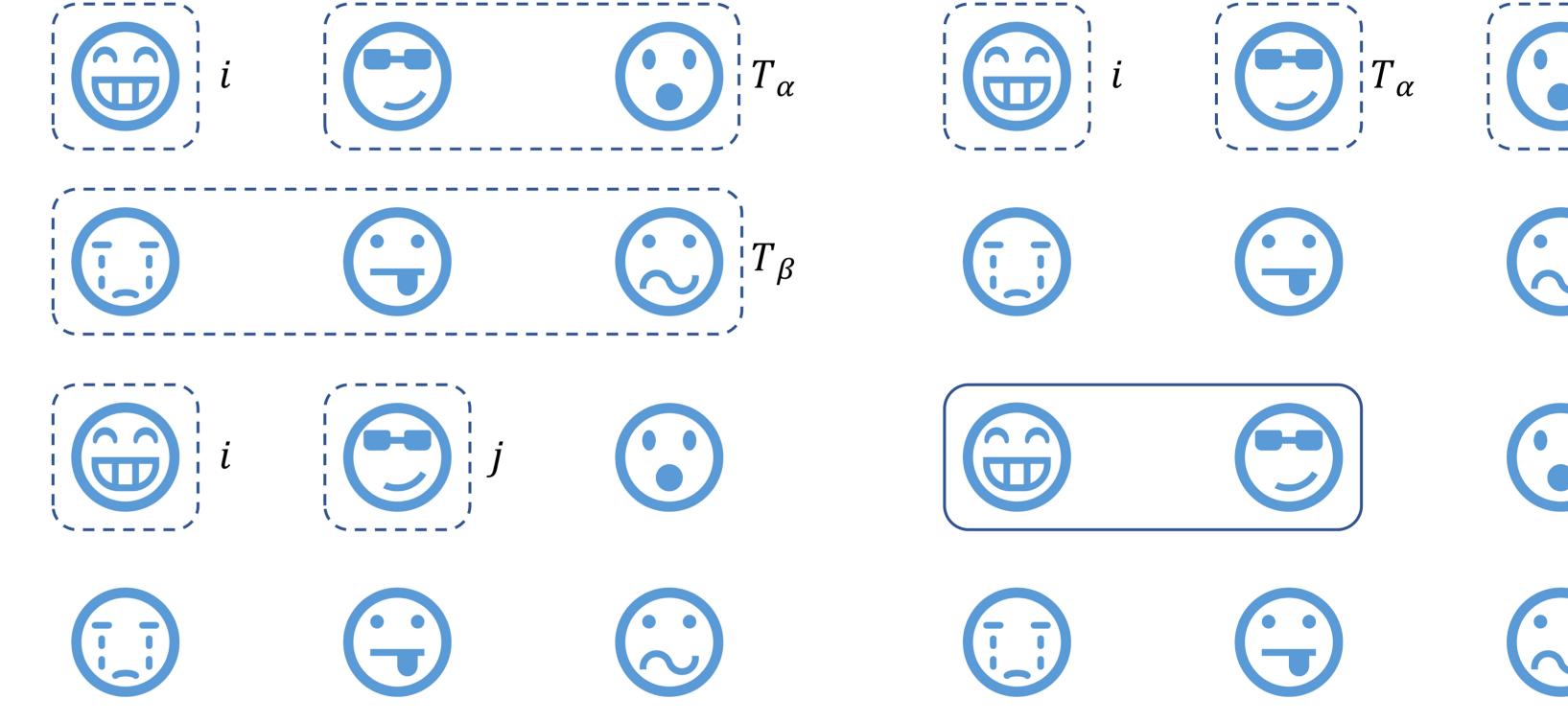
Behavior Model in a Game: Each coalition act as a joint player

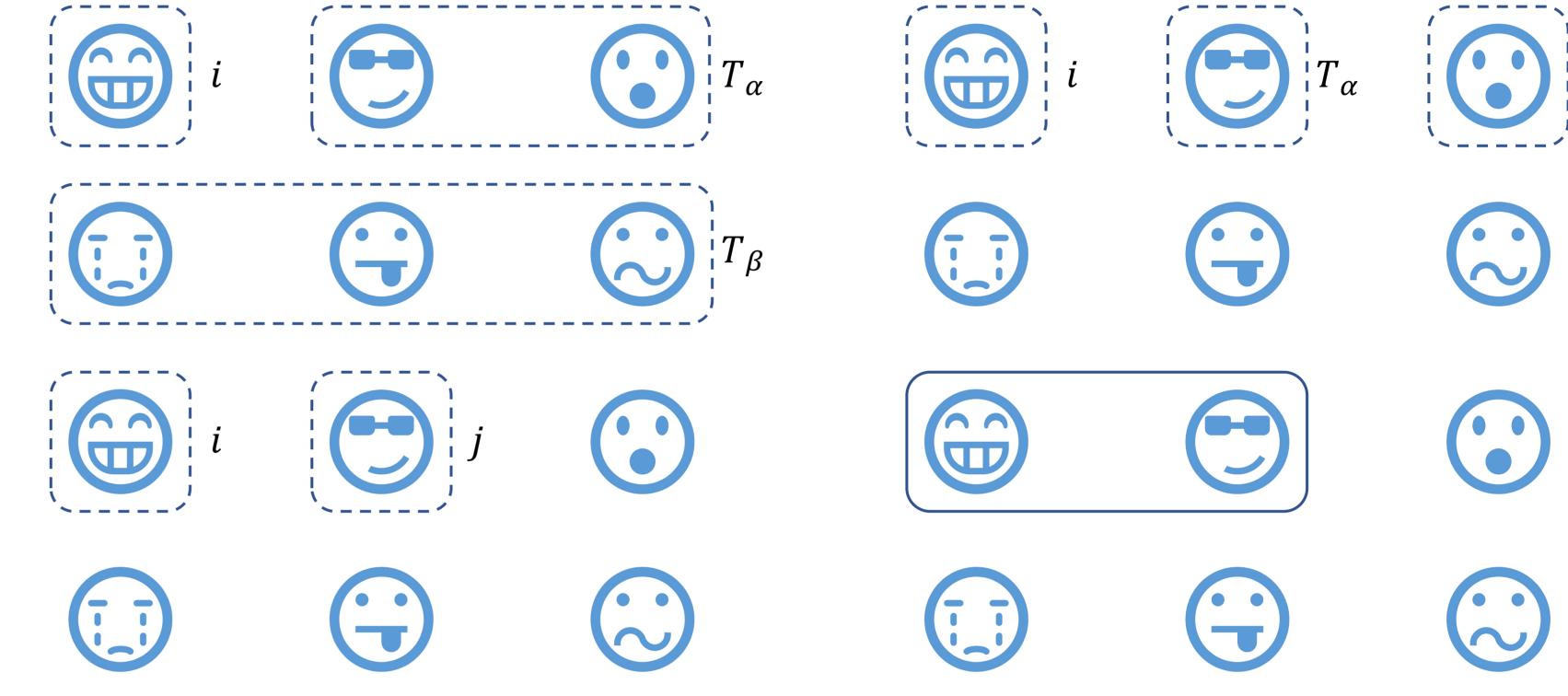
Our Algorithm: Iterative Grouping (IG)

Columbia Carnegie Mellon

Determine each agent's coalition one by one For agent *i*, let all others play **normal form gadgets** with *i* If always defect is an NE, then agent *i* has **no other teammates** Otherwise, we know that **someone is in the same coalition** with *i* Run a **binary search** to locate one teammate *j* of *i* **Merge** *i* and *j* as one joint player Proceed iteratively until *i*'s coalition is finalized

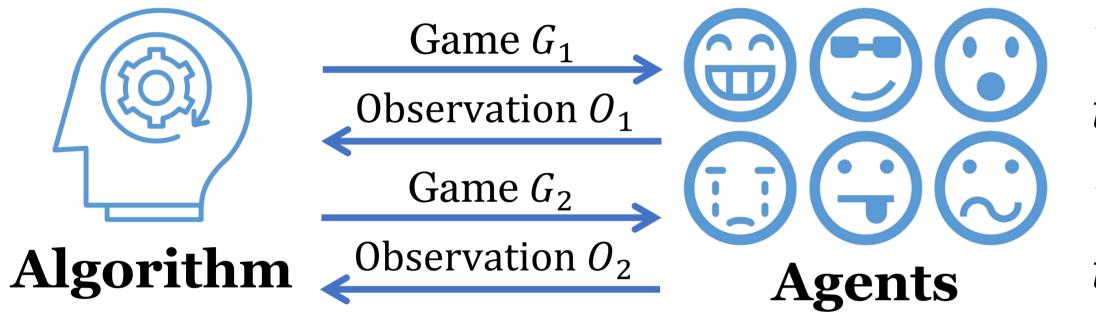






whose actual utility equals the **total utilities of its members Coalition Structure Learning (CSL):** Recover the unknown coalition structure by observing interactions in designed games

 \sim



What kind of **games** can the algorithm design?

What **observation** does the algorithm obtain?

Single-Bit Observation Oracle: The algorithm queries a game G and a strategy profile Σ , the agents answer whether Σ is an **NE** in G Easy to compute for the agents, **one bit of information** per query **Theorem 3.1: Any algorithm** for CSL must interact **at least** $n \log_2 n - O(n \log_2 \log_2 n)$ rounds with the agents

Types of Games: Normal form games, congestion games, graphical games, auctions. We study all four settings in this paper, and show **asymptotically optimal algorithms** for all of them.

Theorem 3.2: IG solves CSL with $n \log_2 n + 3n$ rounds *IG* is **optimal** up to low order terms

Extension: Solving CSL with Auctions

AuctionCSL: The algorithm can only design auctions **Format:** Second-price auctions with personalized reserves Each agent *i* has a valuation v_i and a reserve price r_i The highest bidder wins, with *price* = *max*{*second bid, reserve price*}

Solving CSL with Normal Form Games

How to distinguish between the two?



Normal Form Gadgets: A normal form game where a specific pair of agents (x, y)play the **Prisoner's Dilemma**, and other agents only have one action that has no effect

	Cy	Dy
C_{x}	(3, 3)	(0, 5)
$D_{\mathcal{X}}$	(5,0)	(1, 1)

Lemma 3.1: (D_x, D_y) is an Nash Equilibrium if and only if x and y are not in the same coalition

Product of Normal Form Gadgets: Running several normal form gadgets simultaneously as a single normal form game

Agents **individually act** in each gadget

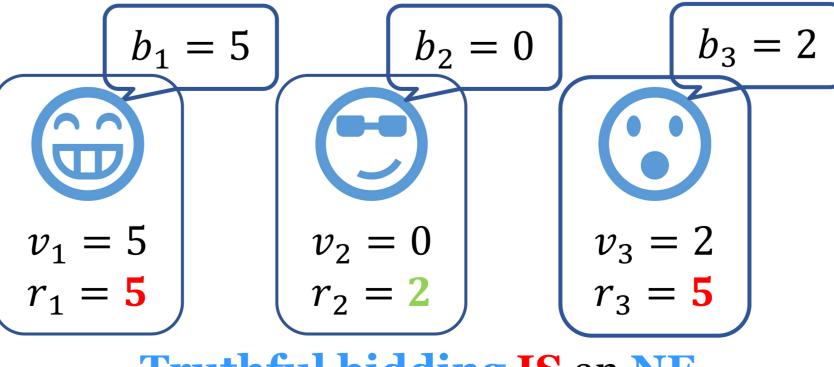
Agent's utility equals the sum of that agent's utility in each gadget

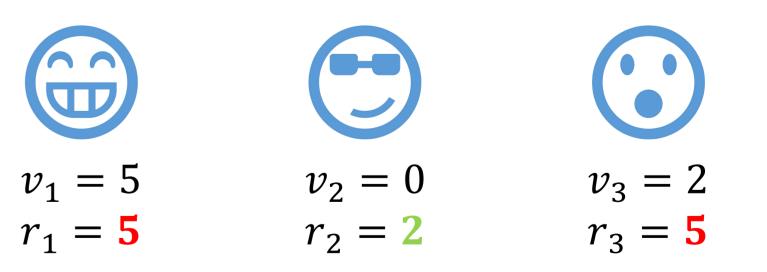
Lemma 3.2: Always defect is a **Nash Equilibrium** iff the chosen pair

To better simulate the practice, we further restrict the algorithm The algorithm can only design the **reserve prices** The valuations are random each query, but the algorithm sees them

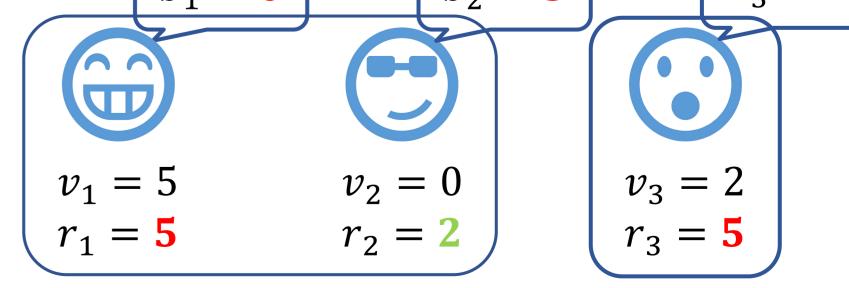
Auction Gadgets: How to tell if there is cooperation between one specific agent and a group?

If Agent 1 is **NOT** Cooperating with Agent 2





If Agent 1 IS Cooperating with Agent 2 $b_3 = 2$ $b_2 = 5$ $b_1 = 0$



Truthful bidding IS an NE

Truthful bidding is **NOT** an **NE**

AuctionIG: Our algorithm built upon auction gadgets **Theorem 4.1:** In expectation, AuctionIG solves AuctionCSL with

