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Abstract

Bilateral trade is one of the most natural and important forms
of economic interaction: A seller has a single, indivisible item
for sale, and a buyer is potentially interested. The two parties
typically have different, privately known valuations for the
item, and ideally, they would like to trade if the buyer values
the item more than the seller. The celebrated impossibility re-
sult by Myerson and Satterthwaite shows that any mechanism
for this setting must violate at least one important desidera-
tum. In this paper, we investigate a richer paradigm of bi-
lateral trade, with many self-interested buyers and sellers on
both sides of a single trade who cannot be excluded from the
trade. We show that this allows for more positive results. In
fact, we establish a dichotomy in the possibility of trading ef-
ficiently. If in expectation, the buyers value the item more, we
can achieve efficiency in the limit. If this is not the case, then
efficiency cannot be achieved in general. En route, we charac-
terize trading mechanisms that encourage truth-telling, which
may be of independent interest. We also evaluate our trading
mechanisms experimentally, and the experiments align with
our theoretical results.

1 Introduction
Bilateral trade is one of the most natural and important forms
of economic interaction in human society: A seller has a sin-
gle, indivisible item for sale, and a buyer is potentially inter-
ested. The two parties typically have different valuations for
the item, e.g., the seller has a production cost, and the buyer
can derive a certain utility from consuming the item. If the
buyer values the item more than the seller, then trading in
an appropriate way would benefit both parties: The buyer
could offer to pay the seller a price strictly between both
parties’ valuations, giving both parties positive gain. On the
other hand, if the seller values the item more, then a trade
would hurt the overall utility of them, and thus should not
take place. We can ensure that the trade takes place if and
only if it is efficient by setting an appropriate price, as long
as both parties’ valuations are public information.

The situation is much subtler in the more realistic setting
where the two parties’ valuations are private. There, max-
imizing the gain from trade becomes a mechanism design
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problem: We want to design a mechanism that, based on
both parties’ private valuations, decides whether they should
trade, and if so, the amounts of money that the buyer pays
and the seller receives. Such a mechanism can be viewed as a
trusted mediator that facilitates trade. The key difficulty here
is to encourage the buyer and the seller to truthfully reveal
their private valuations, so that the mechanism can make the
most socially efficient decisions, i.e., to trade whenever the
buyer values the item more than the seller.

This basic and seemingly simple problem turns out to be
surprisingly challenging. In fact, the seminal impossibility
result of Myerson and Satterthwaite (1983) shows that in the
above setting with private valuations, no mechanism simul-
taneously satisfies the following four natural properties:

• (Bayesian) incentive compatibility: In expectation, both
parties maximize their respective utilities by truthfully
reporting their valuations to the mechanism.

• (Bayesian) individual rationality: The expected values
of participating are non-negative for both parties.

• Weak budget balance: If a trade happens, the amount
of money that the buyer pays should be at least the
amount that the seller receives, so that the mediator of
the mechanism does not need to subsidize the trade.

• Efficiency: The two parties trade if and only if the buyer
values the item more than the seller.

Requiring incentive compatibility is WLOG given the reve-
lation principle, so if we want to implement the socially ef-
ficient outcome, then we have to (1) force at least one party
to reveal their true valuation, (2) force at least one party to
participate, or (3) subsidize the trade — none of which is
feasible in practice. This gives us one of the most famous
impossibility results in economics: Efficient bilateral trade
cannot be implemented in a feasible way.

Interestingly, the above impossibility result is only par-
tially echoed by real-life phenomena. Admittedly, negotia-
tion between two individuals is often highly unpredictable
and not fully efficient. However, when we look at trade be-
tween two sizable “organizations” (e.g., countries) each con-
sisting of many self-interested “members” (e.g., citizens), it
appears that the aggregate decisions made by these mem-
bers more often result in an outcome that overall benefits
members of both organizations due to the large number of
participants and is thus more efficient. In such scenarios, the



multiplicity of members in the two parties seems to provide
a way around the classical impossibility result by Myerson
and Satterthwaite (1983), opening up a new design space.

In this paper, we investigate this richer and seemingly
more permitting paradigm of bilateral trade, with many self-
interested members on both sides of the trade. Roughly
speaking, we consider a model where there are n buyers and
n sellers on the two sides of the trade respectively1, and all
agents on each side share the same allocation and payment.
For concreteness, consider the following example: Amateur
soccer club B wants to buy the right to use a certain soc-
cer field from amateur soccer club S. Members of the buy-
ing club B generally have different valuations for the right
to the field, depending on how much each individual mem-
ber enjoys training and playing. These valuations are drawn
independently from a common prior distribution. The same
also applies to the selling club S (with a different prior). If
the two clubs close a deal, all members of the buying club B
get to enjoy the right to the field, and at the same time, they
all make the same payment in the form of raised membership
fees. As for members of the selling club S, they lose the right
to the field, but each member receives the same payment in
the form of lowered membership fees. In other words, mem-
bers on each side of the trade share the same allocation and
payment, and no one can be excluded from the trade.

In the above setting, ideally, the two clubs should trade if
and only if on average, members of the buying club B value
the right to the field more than members of the selling club
S. There are also other high-stakes real-world trading sce-
narios that are similar to the soccer club example, such as
negotiations between countries, residential communities, or
academic units (e.g., universities, schools, or departments).
In such settings, the preferences of all members should be
accounted for, so naturally, a trading mechanism should take
into consideration the reported valuations of each individual
member of the two sides of the trade, and based on all this
information, try to make the optimal decision for the soci-
ety. Our goal is to investigate the power and limitations of
trading mechanisms in such settings, subject to participation
and incentive constraints.

1.1 Our Results
We begin our investigation by looking at the gains-from-
trade of the first-best mechanism. We show that when the
buyers value the item more than the sellers in expectation,
the first-best gains-from-trade (defined in Section 3) is pro-
portional to the number of agents, and when the sellers value
the item (weakly) more, even the first-best gains-from-trade
per agent goes to zero (Lemma 4.1). This naturally results
in two different cases: when the buyers value the item more,
trading in the right way can benefit each individual agent
significantly, whereas when the sellers value the item more,
there is not much value to be gained in the first place. We
will approach these two cases separately.

1In most of our results, we treat n as the only asymptotic vari-
able. Therefore, we assume the two parties consist of the same
number of agents n for simplicity of presentation. Our results can
also be adapted to the case when they are different.

With this in mind, we proceed by first looking at deter-
ministic trading mechanisms, which are both more practical
and structurally simpler. Our main result is a dichotomy: We
show that if, in expectation, buyers value the item strictly
more than sellers (i.e., we are in the first case discussed
above), then essentially all desiderata discussed above can
be achieved using a simple deterministic trading mechanism
(Theorem 4.3). Alternatively, if sellers value the item at least
as much as buyers in expectation (i.e., we are in the second
case discussed above), then feasible mechanisms, in general,
can only achieve an approximation to the socially optimal
outcome, by a factor strictly smaller than 1. This holds even
if we only require incentive compatibility (Theorem 4.4). So
in short, the paradigm with multiple agents on both sides is
in fact more permitting, but this makes a fundamental differ-
ence only when trading is beneficial in expectation (i.e., the
first case). Nonetheless, when trading is not beneficial in ex-
pectation (i.e., the second case), there is little to be gained in
the first place, so the fact that efficiency cannot be achieved
in a feasible way does not cost much.

Technically, the above results are built on a powerful and
intriguing characterization of feasible deterministic mech-
anisms: We show that any deterministic trading mecha-
nism that that is incentive compatible (i.e., encourages truth-
telling) must proceed in a voting-like way (Theorem 4.1). In
particular, if we require strong budget balance, then there
must be a unique, predetermined price independent of the
agents’ valuations (Theorem 4.2). The mechanism decides
whether to trade by asking each individual agent whether
they want to trade at the above price. Moreover, in order
to encourage truth-telling, this voting procedure has to be
monotone (i.e., if the trade happens when a certain set of
agents approve, then it must also happen when a superset of
those agents approve). More generally, this characterization
might also be useful in other mechanism design problems
that involve certain forms of non-excludability.

Given the dichotomy in the case of deterministic mecha-
nisms, one natural question is whether randomization can
help. To this end, we characterize all incentive compati-
ble randomized mechanisms that are “well-behaved” (i.e.,
twice continuously differentiable): Such mechanisms must
be separable across different agents, in the sense that fixing
the asks (resp. bids) of all sellers (resp. buyers), for each
buyer (resp. seller), there is a component of the allocation
function that depends only on the bid of that buyer (resp.
seller), and the overall allocation function is the sum of all
these components (Theorem 5.1). Somewhat counterintu-
itively, this characterization implies an even stronger nega-
tive result: When sellers in expectation value the item more,
no “well-behaved” randomized mechanisms that encourage
truth-telling can achieve any constant approximation against
the socially optimal outcome (Theorem 5.2). In other words,
randomization, at least when applied in a smooth way, can-
not help in the paradigm of bilateral trade that we study.

Finally, we evaluate our trading mechanism with different
classes of valuation distributions empirically. The experi-
mental results align with our theoretical results. In particular,
our mechanism consistently achieves all desiderata almost
perfectly whenever the number of agents is large enough.



2 Related Work
Bilateral trade. Bilateral trade has been extensively stud-
ied in the classical setting where there is a single agent on
each side of the trade. The seminal impossibility result of
(Myerson and Satterthwaite 1983) shows that no mecha-
nisms for bilateral trade can be both efficient and feasible
(i.e., Bayesian incentive compatible, Bayesian individual ra-
tional, and weak budget balanced). As for approximation of
gains-from-trade, (McAfee 2008) gives a 2-approximation
of the first best when the value distribution has a higher
median than the cost distribution. (Blumrosen and Mizrahi
2016) gives an e-approximation assuming a monotone haz-
ard rate of the value distribution. (Brustle et al. 2017) shows
an unconditional 2-approximation of the second best. (Deng
et al. 2022) shows an unconditional 8.23-approximation of
the first best, later improved into a 3.15-approximation by
(Fei 2022). Our results in this paper extend and complement
existing research on bilateral trade.

Double auctions. A related line of work to our setting is
double auctions, which also generalizes bilateral trade to the
case when there are multiple buyers and sellers. There is a
significant body of work on double auctions (Babaioff et al.
2018; Babaioff, Goldner, and Gonczarowski 2020; Balseiro
et al. 2019; Brustle et al. 2017; Cai et al. 2021; McAfee
1992; Colini-Baldeschi et al. 2016, 2020, 2017). In the set-
ting that we study, allocation and payment are shared across
all agents, which is not the case in double auctions.

Non-excludable mechanism design. Another related line
of work is non-excludable mechanism design. Here, “non-
excludable” means that if something is allocated, then it
is allocated to all agents participating in the mechanism,
i.e., no agent can be excluded from the allocation (Samuel-
son 1954; Mugrave 1959; Hardin 1968; Ostrom 1990). A
common example of non-excludable mechanisms is public
projects, where the auctioneer allocates the same amount of
the public goods to all players simultaneously. There is a
rich body of work on this topic (Papadimitriou, Schapira,
and Singer 2008; Buchfuhrer, Schapira, and Singer 2010;
Dobzinski 2011; Dughmi, Roughgarden, and Yan 2016; Bal-
seiro et al. 2021). In our setting, the allocation, payment, and
receipt are similarly shared among all participants in each
group. To the best of our knowledge, our work is the first to
consider two sides trading in the context of non-excludable
mechanism design with shared payment.

3 Preliminaries
A set of n sellers has a certain product that it can sell to a
set of n buyers. Each buyer i ∈ [n] has a private value vi,
and each seller j ∈ [n] has a private cost cj , for if the trade
happens. We denote the vectors of buyer values and seller
costs as v and c, respectively. According to the revelation
principle, we can restrict our attention to incentive compat-
ible mechanisms M, where each buyer i submits a sealed
bid bi and each seller j submits a sealed ask aj . Let b be the
vector of all buyer bids and a be the vector of all seller asks.
The mechanism then decides an allocation x(b,a) ∈ [0, 1]
shared by all participants, indicating the probability of trad-

ing, a payment p(b,a) ∈ R shared by all buyers, and a re-
ceipt r(b,a) ∈ R shared by all sellers.

We study this multiplayer bilateral trade (MBT) problem
in the Bayesian setting, where we assume that the buyer val-
ues v are drawn i.i.d. from a known bounded prior distribu-
tion F and the seller costs c are drawn i.i.d. from a known
bounded prior distribution G. Without loss of generality, let
F and G be bounded on [0, 1]. We also use F and G to
denote the cumulative distribution functions, i.e., F (τ) =
Prv∼F [v ≤ τ ], G(τ) = Prc∼G[c ≤ τ ] (τ ∈ [0, 1]).

For buyer i and seller j, the quasilinear utilities are de-
fined as ui(b,a) = x(b,a) · vi − p(b,a) and uj(b,a) =
r(b,a) − x(b,a) · cj respectively. Incentive compatibility
means that by truthfully revealing the private value or cost,
each buyer or seller obtains the outcome maximizing his or
her utility regardless of the bids and asks from others. For
simplicity, we assume ties in utility are broken in favor of a
trade. That is, if multiple outcomes share the same utility, the
outcome with larger x is preferred by the participants. Then,
in an incentive compatible mechanism, it is a dominant strat-
egy to bid b = v and ask a = c. As we consider an environ-
ment that requires shared allocation, payment, and receipt,
we generalize the standard notion of individual rationality
to one that considers each group as a whole, i.e., the total
utility of buyers and sellers should be positive respectively.

For the bilateral trade problem, the mechanism designer
is commonly concerned with the gains-from-trade (GFT),
which refers to the expected utility gain from trading. For-
mally, for an incentive compatible mechanism M, GFT =
Ev∼Fn,c∼Gn [(

∑
i vi−

∑
j cj) ·x(v, c)]. To maximize GFT,

ideally, we want the trade to happen whenever the total value
of the buyers is greater than the total cost of the sellers. We
call this optimal GFT the first best (FB). That is, FB equals

Ev∼Fn,c∼Gn

∑
i

vi −
∑
j

cj

1

∑
i

vi ≥
∑
j

cj

 .

We are interested in mechanisms that are incentive com-
patible (IC), individually rational (IR) in the above sense,
weakly budget balanced (WBB), and efficient in the limit,
meaning that as n → ∞, the mechanism’s GFT ALG ap-
proaches FB, i.e., ALG

FB = 1− o(1).

4 Deterministic Mechanisms
In this section, we consider deterministic mechanisms for
multiplayer bilateral trade (MBT). Namely, the allocation
function x(b,a) ∈ {0, 1} is either 0 or 1. Before we pro-
ceed, we first present the following Lemma 4.1. The proof
follows standard calculation of concentration inequalities
and is deferred to Appendix A.1.

Lemma 4.1. When Ev∼F [v] ≤ Ec∼G[c], FB = O(
√
n).

When Ev∼F [v] > Ec∼G[c], FB = Ω(n).

Lemma 4.1 naturally divides the MBT problem into two
cases: when the buyers value the item more in expectation,
and when the sellers value the item (weakly) more in expec-
tation. In the latter case, the gains-from-trade per agent goes
to zero even under the first-best mechanism.



With these two different cases in mind, we will approach
them separately. We will first characterize the set of alloca-
tion functions that are implementable by an IC mechanism
in Section 4.1. Using this characterization, we establish a
dichotomy in MBT: We will present a positive result when
buyers value the item more in expectation (Section 4.2), and
then show in the case that sellers value the item (weakly)
more in expectation, no mechanism can, in general, achieve
all the desiderata (Section 4.3).

4.1 Characterization of Incentive Compatible
Mechanisms

The following Theorem 4.1 is our characterization of the
set of allocation functions that are implementable by an IC
mechanism. If we additionally require the mechanism to be
strongly budget balanced (SBB), i.e., the total payment of
the buyers always equals the total receipt of the sellers, then
it can be further simplified as described in Theorem 4.2.

At a high level, our characterization shows that any de-
terministic trading mechanism that is incentive compatible
must proceed in a voting-like way. In particular, if we re-
quire strong budget balance, then there must be a unique,
predetermined price independent of the agents’ valuations.
The way the mechanism decides whether to trade is by ask-
ing each individual agent whether they want to trade at the
above price, which can also be viewed as running a vot-
ing procedure. Moreover, in order to encourage truth-telling,
this voting procedure has to be monotone (i.e., if the trade
happens when a certain set of agents approve, then it must
also happen when a superset of those agents approve).

Theorem 4.1. A deterministic allocation function x(b,a)
for MBT can be implemented by an IC mechanism if and
only if both of the following statements hold.

(a) ∀a ∈ [0, 1]n, there exists τa ∈ [0, 1] and a monotone
Boolean function fa : {0, 1}n → {0, 1}, such that
x(b,a) = fa(1 [b1 ≥ τa] , · · · ,1 [bn ≥ τa]),

(b) ∀b ∈ [0, 1]n, there exists θb ∈ [0, 1] and a monotone
Boolean function gb : {0, 1}n → {0, 1} such that
x(b,a) = gb(1 [a1 ≤ θb] , · · · ,1 [an ≤ θb]).

Theorem 4.2. A deterministic allocation function x(b,a)
for MBT can be implemented by an IC and SBB mecha-
nism if and only if there exists τ ∈ [0, 1] and a monotone
Boolean function f : {0, 1}2n → {0, 1} such that x(b,a) =
f(1 [b1 ≥ τ ] , · · · ,1 [bn ≥ τ ] ,1 [a1 ≤ τ ] , · · · ,1 [an ≤ τ ]).

To give proofs to both of the theorems, we first invoke
Myerson’s Lemma from (Myerson 1981).

Lemma 4.2 (Myerson’s Lemma (Myerson 1981)). Con-
sider a single-parameter environment with n bidders where
bidder i has a private value vi ∼ Fi. Let the utility of bidder
i be ui(b) = vi ·xi(b)−pi(b). Here b are the bidders’ bids
and xi(b), pi(b) are defined by the mechanism. Then

(a) Allocation function x is implementable by an IC
mechanism if and only if for every i ∈ [n], xi(b) is
non-decreasing in bi.

(b) If ∀i ∈ [n], xi(b) is non-decreasing in bi, then mech-
anism (x,p) is IC if and only if

pi(bi,b-i) = bi · xi(bi,b-i)−
∫ bi

z=−∞
xi(z,b-i)dz

+hi(b-i) ∀i ∈ [n].

Here, hi is a function unrelated to bi for each i ∈ [n].

Note that in the context of Lemma 4.2, the allocation xi

and payment pi functions for each bidder i can be different,
but in our MBT setting, the allocation function x is shared
by all participants, and the payment p and receipt r functions
are shared by all buyers and sellers respectively. This further
restricts the range of feasible allocation functions. A trans-
lated version of Lemma 4.2 in our setting is presented as
Lemma 4.3 below with its proof deferred to Appendix A.2.

Lemma 4.3. If an allocation function x(b,a) for MBT can
be implemented by an IC mechanism (x, p, r), then all of the
following claims hold.

(a) x(b,a) is non-decreasing in bi for all i ∈ [n] and
non-increasing in aj for all j ∈ [n].

(b) There exist functions hi for each i ∈ [n] such that

p(bi,b-i,a) = bi · x(bi,b-i,a)−
∫ bi

z=−∞
x(z,b-i,a)dz

+hi(b-i,a) ∀i ∈ [n].

(c) There exist functions hj for each j ∈ [n] such that

r(b, aj ,a-j) = aj · x(b, aj ,a-j) +

∫ +∞

z=aj

x(b, z,a-j)dz

+hj(b,a-j) ∀j ∈ [n].

(d) {(b,a) | x(b,a) = 1} is a closed set.

Applying Lemma 4.3, we will be able to prove Lemma 4.4
which relates the allocation function to the payment and re-
ceipt functions. Its proof can be found in Appendix A.3.

Lemma 4.4. If an allocation function x(b,a) for MBT can
be implemented by an IC mechanism (x, p, r), then for any
0 ≤ α ≤ β ≤ 1 and i, j ∈ [n]

(a) x(α,b-i,a) = x(β,b-i,a)

⇒ p(α,b-i,a) = p(β,b-i,a),

(b) x(b, α,a-j) = x(b, β,a-j)

⇒ r(b, α,a-j) = r(b, β,a-j).

Note that for SBB mechanisms, p(b,a) = r(b,a). By it-
eratively applying Lemma 4.4 to each applicable coordinate,
we can see the following Corollary 4.1 holds.

Corollary 4.1. If an allocation function x(b,a) for MBT
can be implemented by an IC mechanism (x, p, r), then for
any b(0) ⪯ b(1),a(0) ⪰ a(1),

(a) x(b(0),a) = x(b(1),a) ⇒ p(b(0),a) = p(b(1),a),

(b) x(b,a(0)) = x(b,a(1)) ⇒ r(b,a(0)) = r(b,a(1)).



Moreover, if x(b,a) for MBT can be implemented by an IC
and SBB mechanism,

(c) x(b(0),a(0)) = x(b(1),a(1)) ⇒ p(b(0),a(0))

= p(b(1),a(1)) = r(b(0),a(0)) = r(b(1),a(1)).

Here ⪯ and ⪰ mean componentwise ≤ and ≥ respectively.

Let 0⃗, 1⃗ be vectors of n zeros and n ones respectively.
Next, we will present two lemmas connecting back to The-
orem 4.1 and Theorem 4.2 with their proofs deferred to Ap-
pendices A.4 and A.5.
Lemma 4.5. If a deterministic allocation function x(b,a)
for MBT can be implemented by an IC mechanism, then the
following statements hold.

(a) For any a ∈ [0, 1]n, let τa = p(⃗1,a)− p(⃗0,a), then

1
[
α ≥ τa

]
= 1

[
β ≥ τa

]
⇒ x(α,b-i,a) = x(β,b-i,a).

(b) For any b ∈ [0, 1]n, let θb = r(b, 0⃗)− r(b, 1⃗), then

1
[
α ≤ θb

]
= 1

[
β ≤ θb

]
⇒ x(b, α,a-j) = x(b, β,a-j).

There is also a version of Lemma 4.5 for IC and SBB
mechanisms with an almost identical proof.
Lemma 4.6. If a deterministic allocation function x(b,a)
for MBT can be implemented by an IC and SBB mechanism
(x, p, r), then let τ = p(⃗1, 0⃗)− p(⃗0, 1⃗), ∀0 ≤ α ≤ β ≤ 1,

(a) 1
[
α ≥ τ

]
= 1

[
β ≥ τ

]
⇒ x(α,b-i,a) = x(β,b-i,a),

(b) 1
[
α ≤ τ

]
= 1

[
β ≤ τ

]
⇒ x(b, α,a-j) = x(b, β,a-j).

With all of the above lemmas, we are able to prove
Theorem 4.1 and Theorem 4.2. In fact, the necessity of
Theorem 4.1 (resp. Theorem 4.2) is already implied by
Lemma 4.5 (resp. Lemma 4.6). The proofs of the sufficiency
of these theorems can be found in Appendices A.6 and A.7.

4.2 When Expected Value is Greater than
Expected Cost: A Simple Efficient Mechanism

Theorems 4.1 and 4.2 provide a characterization of the de-
sign space. Under this design space, we will first show a
simple mechanism that is IC, SBB, IR in the limit and effi-
cient in the limit when the expected value is greater than the
expected cost, i.e., Ev∼F [v] > Ec∼G[c].

Algorithm 1: Forced-Trade Mechanism
Trade if and only if Ev∼F [v] > Ec∼G[c], with both payment
and receipt being 0.5(Ev∼F [v] +Ec∼G[c]). I.e.,

x(b,a) = 1
[
Ev∼F [v] > Ec∼G [c]

]
,

p(b,a) = r(b,a) = 0.5(Ev∼F [v] +Ec∼G [c]) · x(b,a).

We show Algorithm 1 achieves all desiderata in the limit.
Theorem 4.3. Algorithm 1 is IC and SBB. When Ev∼F [v] >
Ec∼G[c], as n → ∞, Algorithm 1 is IR with probability
1− e−Ω(n), and ALG

FB = 1− e−Ω(n) where ALG is its GFT.
The proof of Theorem 4.3 can be found in Appendix A.8.

4.3 When Expected Value is No Greater than
Expected Cost: No Efficient Mechanisms

Theorem 4.3 shows that when the expected value is greater
than the expected cost, the extremely simple Algorithm 1
achieves all desiderata in the limit. In our next Theorem 4.4,
we will additionally show that when this is not the case, no
mechanisms can be both IC and efficient in the limit.
Theorem 4.4. When Ev∼F [v] ≤ Ec∼G[c], no IC mecha-
nisms for MBT can be efficient in the limit.

The proof of Theorem 4.4 is built on our characteriza-
tion (Theorem 4.1) and deferred to Appendix A.9. By The-
orem 4.4, when the expected value is no greater than the ex-
pected cost, the multiplicative approximation ratio of any IC
deterministic mechanism is 1 − Ω(1), i.e., no deterministic
IC mechanism can be efficient in the limit. However, recall
that Lemma 4.1 shows that in this case, the first best is o(n).
This implies that additively, Algorithm 1 does not lose much
compared to the first best even if it does not trade at all.

5 Randomized Mechanisms
In this section, we move on to consider twice continuously
differentiable randomized mechanisms for multiplayer bilat-
eral trade (MBT). Namely, the allocation function x(b,a) ∈
[0, 1] and x is twice continuously differentiable. Note that
Lemma 4.1 still holds in this context. Therefore, we will take
a similar approach with Section 4. We will still first charac-
terize the set of allocation functions that are implementable
by an IC mechanism in Section 5.1. When the expected
value is greater than the expected cost, Algorithm 1 in Sec-
tion 4.2 is still applicable as the allocation function of Algo-
rithm 1 is also twice continuously differentiable. And when
the expected value is not greater than the expected cost, we
show in Section 5.2 that no twice continuously differentiable
randomized mechanism can achieve all the desiderata, sim-
ilarly to Section 4. In other words, completely smooth ran-
domness cannot help in MBT. Surprisingly, our negative re-
sult is stronger than Theorem 4.4.

5.1 Characterization of Incentive Compatible
Mechanisms

We characterize the set of all twice continuously differ-
entiable randomized allocation functions that are imple-
mentable by an IC mechanism in the following Theorem 5.1.

From a general perspective, our characterization shows
that such mechanisms must be separable across different
agents, which means that fixing the asks (resp. bids) of all
sellers (resp. buyers), for each buyer (resp. seller), there is a
component of the allocation function that depends only on
the bid of that buyer (resp. seller), and the overall allocation
function is the sum of all these components
Theorem 5.1. A twice continuously differentiable random-
ized allocation function x(b,a) for MBT can be imple-
mented by an IC mechanism if and only if both of the fol-
lowing statements hold.
(a) For all a ∈ [0, 1]n, there exist n non-decreasing differ-

entiable functions fa,i : [0, 1] → R,∀i ∈ [n], such that
x(b,a) = fa,1(b1) + fa,2(b2) + · · ·+ fa,n(bn).



(µF , µG) (0.6, 0.4) (0.55, 0.45) (0.51, 0.49)
Distribution n IR Efficiency IR Efficiency IR Efficiency

Normal
5 0.804033 0.992350 0.539705 0.899567 0.302261 0.359552

100 1.000000 1.000000 0.995614 0.999999 0.510591 0.870741
10000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Uniform
5 0.684952 0.972358 0.464824 0.823521 0.288943 0.290061

100 0.999992 1.000000 0.969823 0.999900 0.445284 0.788148
10000 1.000000 1.000000 1.000000 1.000000 0.999989 1.000000

Bernoulli
5 0.465557 0.809241 0.351963 0.558944 0.268607 0.150281

100 0.966587 0.999779 0.749410 0.975987 0.382188 0.512118
10000 1.000000 1.000000 1.000000 1.000000 0.955986 0.999752

Mixed
5 0.566107 0.909725 0.401324 0.694859 0.277582 0.208867

100 0.997254 0.999999 0.870417 0.997094 0.382296 0.655883
10000 1.000000 1.000000 1.000000 1.000000 0.997250 1.000000

Table 1: Performance of Algorithm 1 under various conditions. IR is the empirical probability of Algorithm 1 being IR and
efficiency is the empirical expected GFT/FB. All data are averaged over 106 runs.

(b) For all b ∈ [0, 1]n, there exist n non-increasing differ-
entiable functions gb,j : [0, 1] → R,∀j ∈ [n], such that
x(b,a) = gb,1(a1) + gb,2(a2) + · · ·+ gb,n(an).

Below, we will first provide two lemmas. Theorem 5.1 can
then be proved by combining these two lemmas.
Lemma 5.1. For a twice continuously differentiable func-
tion f(x1, x2, . . . , xn) : Rn → R, the following statements
(i) and (ii) are equivalent.

(i) There exist n differentiable functions fi : R → R, that
f(x1, x2, . . . , xn) =

∑n
i=1 fi(xi).

(ii) For any i, j ∈ [n], i ̸= j, ∂2f
∂xi∂xj

(x1, x2, . . . , xn) = 0.

Lemma 5.2. If a twice continuously differentiable random-
ized allocation function x(b,a) for MBT can be imple-
mented by an IC mechanism, then the followings hold.
(a) Fix a ∈ [0, 1]n,

∂2x

∂bi1∂bi2
(b,a) = 0,∀i1, i2 ∈ [n], i1 ̸= i2.

(b) Fix b ∈ [0, 1]n,
∂2x

∂aj1∂aj2
(b,a) = 0,∀j1, j2 ∈ [n], j1 ̸= j2.

With Lemmas 5.1 and 5.2, we are ready to show The-
orem 5.1. The detailed proofs of Lemmas 5.1 and 5.2
and Theorem 5.1 are deferred to Appendices B.1 to B.3.

5.2 When Expected Value is No Greater than
Expected Cost: No Efficient Mechanisms

At first glance, one might think twice continuously differ-
entiable randomized mechanisms should be more powerful
than deterministic mechanisms because the choice of alloca-
tion function seems much wider. However, we show in the
following Theorem 5.2 that on the contrary, these mecha-
nisms are not even capable of being a constant approxima-
tion of FB in the limit.
Theorem 5.2. When Ev∼F [v] ≤ Ec∼G[c], no IC twice con-
tinuously differentiable mechanisms for MBT can have a
GFT that is a constant approximation of FB in the limit.

The proof of Theorem 5.2 can be found in Appendix B.4.

6 Experiments
In the previous sections, we have shown that the simple
Algorithm 1 achieves all desiderata in the limit asymptot-
ically when Ev∼F [v] > Ec∼G[c] and no mechanisms can
do so when Ev∼F [v] ≤ Ec∼G[c]. In this section, we study
the non-asymptotic performance of Algorithm 1 by running
experiments on various generated datasets. Only simulated
data without real individuals are involved in the experiments.
As Algorithm 1 is always IC and SBB, we focus on study-
ing the empirical probability that Algorithm 1 is IR and its
empirical efficiency on datasets of practically relevant sizes.

Experiment setup. We implemented Algorithm 1 in
C++. The source code can be found at https://github.com/
YixuanEvenXu/bilateral-trade. The datasets we used were
generated as follows. The distributions F and G are both
supported on [0, 1]. In every dataset, F and G belong to one
of the 4 families of distributions given below and were trun-
cated to the specified support whenever necessary.

(1) Normal: F,G are normal distributions N (µ, σ2)
where µ = µF or µG and σ = 0.2.

(2) Uniform: F,G are uniform distributions U [µ−r, µ+
r] where µ = µF or µG and r = 0.4.

(3) Bernoulli: F,G are Bernoulli distributions Ber(µ)
where µ = µF or µG.

(4) Mixed: F,G are mixed distributions with 1
3 proba-

bility of (1), (2), and (3) each.

For each type of distribution above, we performed var-
ious tests with n = {5, 100, 10000} and (µF , µG) =
{(0.6, 0.4), (0.55, 0.45), (0.51, 0.49)}. The complete exper-
imental results are shown in Table 1. All of the data are aver-
aged over 106 runs. We also highlight a few results in Figs. 1
and 2 to make it easier to interpret the results.

Comparing when n = 5, 100, and 10000. As shown in
Table 1 and Fig. 1, Algorithm 1’s empirical probability of
being IR and empirical efficiency generally increase as n
scales up. This is consistent with the asymptotic guaran-
tees of Algorithm 1 in Theorem 4.3. Moreover, as long as



(a) n = 5 (b) n = 100 (c) n = 10000

Figure 1: Performance of Algorithm 1 when (µF , µG) = (0.55, 0.45) and n = 5, 100, 10000. Error bars indicate standard error
of mean. The empirical probability of being IR and the empirical efficiency converge to 1.0 as n increases. Algorithm 1 has a
good performance for reasonably large n. Errors are negligible due to the large number of samples.

(a) (µF , µG) = (0.6, 0.4) (b) (µF , µG) = (0.55, 0.45) (c) (µF , µG) = (0.51, 0.49)

Figure 2: Performance of Algorithm 1 when (µF , µG) = (0.6, 0.4), (0.55, 0.45), (0.51, 0.49) and n = 100. Error bars indicate
standard error of mean. The empirical probability of being IR and the empirical efficiency decrease as µF − µG gets smaller.
When µF and µG are not too close, n ≥ 100 is enough to guarantee good performance of Algorithm 1. Errors are negligible
due to the large number of samples.

µF − µG is not too small, n does not have to be very large
to ensure a high probability of IR and efficiency.

Comparing when (µF , µG) = (0.6, 0.4), (0.55, 0.45), and
(0.51, 0.49). As shown in Table 1 and Fig. 2, Algorithm
1’s empirical probability of being IR and empirical effi-
ciency generally decrease as µF − µG goes down. Note that
Theorems 4.4 and 5.2 show that it is impossible to be effi-
cient in the limit when µF ≤ µG. The experiments imply
that the closer an instance is to µF ≤ µG, the harder it is to
solve it well. Moreover, even if µF −µG is extremely small,
i.e., (µF , µG) = (0.51, 0.49), with a sufficiently large n, say
n ≥ 10000, Algorithm 1’s empirical probability of IR and
empirical efficiency can still be very close to 1.0.

Comparing different types of distributions. For each set
of (n, µF , µG), we can observe that the performance of Al-
gorithm 1 is generally better on normal and uniform distribu-
tions, and worse on Bernoulli and mixed distributions. This
is because the variances of normal and uniform distributions
are lower than those of Bernoulli and mixed distributions,
suggesting that the performance of Algorithm 1 is better if
the distributions F,G have lower variances.

7 Discussions
In this paper, we conducted a thorough investigation of bi-
lateral trade when there are multiple self-interested agents
on both sides of the trade. Our results suggest that we can

achieve all desiderata in the limit, as long as buyers value the
item more than sellers in expectation. Alternatively, when
sellers value the item (weakly) more, efficiency is impossi-
ble with feasible deterministic mechanisms, and smooth ran-
domness does not help, either. On the other hand, we showed
that in these negative cases, even the first-best cannot obtain
much value, so not much value is lost. These results extend
and complement existing results in classical settings of bi-
lateral trade. In addition, our characterizations of feasible
mechanisms might be of independent interest in other mech-
anism design problems with shared allocation and payment.

While the setting we study is motivated by real-world ap-
plications, there are other settings that are also practically
sensible. For example, in certain trading scenarios, it might
be possible to exclude a subset of agents from the trade. Such
settings are reminiscent of mechanism design for cost shar-
ing (Moulin and Shenker 1992). One might also consider
relaxed notions of incentive compatibility, or personalized
payments, which would greatly expand the design space and
allow for more efficient mechanisms. Another practical con-
sideration is prior-independence: Can we design a mecha-
nism that achieves efficiency independent of the value and
cost distributions? Given our characterization, it is not hard
to show that this cannot be done in the setting considered in
this paper, but there might be possibilities if one, for exam-
ple, considers a relaxed notion of incentive compatibility.
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A Missing Proofs in Section 4
A.1 Proof of Lemma 4.1
Proof of Lemma 4.1: Let µ̂v = 1

n

∑
i vi, µ̂c =

1
n

∑
j cj , and let the mean and variance of F,G be µv, σ

2
v , µc, σ

2
c , respectively.

Compute that FB = n · Ev∼Fn,c∼Gn [(µ̂v − µ̂c) · 1 [µ̂v ≥ µ̂c]]. Note that for i ∈ [n] (resp. j ∈ [n]), vi (resp. cj) are i.i.d.
random variables with mean µ = µv (resp. µc) and variance σ2 = σ2

v (resp. σ2
c ). Using the central limit theorem,

√
n(µ̂v −µv)

(resp.
√
n(µ̂c − µc)) converges in distribution to a normal distribution N (0, σ2

v) (resp. N (0, σ2
c )).

When µv ≤ µc,

n · (µ̂v − µ̂c) · 1
[
µ̂v ≥ µ̂c

]
≤

√
n ·
(√

n(µ̂v − µv)−
√
n(µ̂c − µv)

)
· 1
[√

n(µ̂v − µv) ≥
√
n(µ̂c − µv)

]
.

Thus,

FB ≤ (1 + o(1))
√
n ·Ex∼N (0,σ2

v),y∼N (0,σ2
c)

[
(x− y) · 1

[
x ≥ y

]]
= O(

√
n).

On the other hand, when µv > µc,

FB = n ·Ev∼Fn,c∼Gn

[
(µ̂v − µ̂c) · 1

[
µ̂v ≥ µ̂c

]]
≥ n ·Ev∼Fn,c∼Gn [(µ̂v − µ̂c)]

= n(µv − µc) = Ω(n).

This concludes the proof of Lemma 4.1.

A.2 Proof of Lemma 4.3
Proof of Lemma 4.3: Recall that each buyer i has a utility ui(b,a) = vi · x(b,a) − p(b,a) and each seller j has a utility
uj(b,a) = r(b,a)−cj ·x(b,a) = (−cj) ·x(b,a)− (−r(b,a)). Consider buyer i as a bidder with private value vi and seller j
as a bidder with private value −cj in the context of Lemma 4.2. As x(b,a) for MBT can be implemented by an IC mechanism,
by Lemma 4.2, (a), (b) and (c) hold. Moreover, as ties in utility are broken in favor of a trade, (d) holds.

A.3 Proof of Lemma 4.4
Proof of Lemma 4.4: For (a), according to Lemma 4.3 (b),

p(β,b-i,a)− p(α,b-i,a) = β · x(β,b-i,a)− α · x(α,b-i,a)−
∫ β

z=α

x(z,b-i,a)dz.

If x(α,b-i,a) = x(β,b-i,a), by Lemma 4.3 (a), x(bi,b-i,a) is constant for bi ∈ [α, β]. Then according to the equation above,
p(β,b-i,a)− p(α,b-i,a) = 0. (a) holds.

For (b), according to Lemma 4.3 (c),

r(b, β,a-j)− r(b, α,a-j) = β · x(b, β,a-j)− α · x(b, α,a-j) +

∫ α

z=β

x(b, z,a-j)dz.

By similar argument about Lemma 4.3 (a), we see (b) also holds.

A.4 Proof of Lemma 4.5
Proof of Lemma 4.5: We will prove both statements by contradiction.

Suppose (a) does not hold, i.e., x(α,b-i,a) = 0 but x(β,b-i,a) = 1. According to Lemma 4.3 (b),

p(β,b-i,a)− p(α,b-i,a) = β −
∫ β

z=α

x(z,b-i,a)dz.

On the other hand, note that as x(α,b-i,a) = 0 and x(β,b-i,a) = 1, by Lemma 4.3 (a), x(⃗0,a) = 0 and x(⃗1,a) = 1, so
x(α,b-i,a) = x(⃗0,a) and x(β,b-i,a) = x(⃗1,a). By Corollary 4.1 (a), p(β,b-i,a) − p(α,b-i,a) = p(⃗1,a) − p(⃗0,a) = τa.
Together with the above equation, we know ∫ β

z=α

x(z,b-i,a)dz = β − τa.



By Lemma 4.3 (a), (d) and x ∈ {0, 1}, we can conclude that x(bi,b-i,a) = 1 [bi ≥ τa] (bi ∈ [α, β]). Thus, 1 [α ≥ τa] =
0,1 [β ≥ τa] = 1. This is a contradiction.

Similarly, suppose (b) does not hold, i.e., x(b, α,a-j) = 1 and x(b, β,a-j) = 0. By Lemma 4.3 (c),

r(b, β,a-j)− r(b, α,a-j) = −α+

∫ α

z=β

x(b, z,a-j)dz.

On the other hand, note that as x(b, α,a-j) = 1 and x(b, β,a-j) = 0, by Lemma 4.3 (a), x(b, 1⃗) = 0 and x(b, 0⃗) = 1, so
x(b, β,a-j) = x(b, 1⃗) and x(b, α,a-j) = x(b, 0⃗). By Corollary 4.1 (c), r(b, β,a-j)−r(b, α,a-j) = r(b, 1⃗)−r(b, 0⃗) = −θb.
Together with the above equation, we know ∫ β

z=α

x(b, z,a-j)dz = θb − α.

By Lemma 4.3 (a), (d) and x ∈ {0, 1}, we can conclude that x(b, aj ,a-j) = 1 [aj ≤ θb] (aj ∈ [α, β]). Thus, 1 [α ≤ θb] =
1,1 [β ≤ θb] = 0. This is a contradiction.

A.5 Proof of Lemma 4.6
Proof of Lemma 4.6: We will prove both statements by contradiction.

Suppose (a) does not hold, i.e., x(α,b-i,a) = 0 but x(β,b-i,a) = 1. According to Lemma 4.3 (b),

p(β,b-i,a)− p(α,b-i,a) = β −
∫ β

z=α

x(z,b-i,a)dz.

On the other hand, note that as x(α,b-i,a) = 0 and x(β,b-i,a) = 1, by Lemma 4.3 (a), x(⃗0, 1⃗) = 0 and x(⃗1, 0⃗) = 1, so
x(α,b-i,a) = x(⃗0, 1⃗) and x(β,b-i,a) = x(⃗1, 0⃗). By Corollary 4.1 (c), p(β,b-i,a) − p(α,b-i,a) = p(⃗1, 0⃗) − p(⃗0, 1⃗) = τ .
Together with the above equation, we know ∫ β

z=α

x(z,b-i,a)dz = β − τ.

By Lemma 4.3 (a), (d) and x ∈ {0, 1}, we can conclude that x(bi,b-i,a) = 1 [bi ≥ τ ] (bi ∈ [α, β]). Thus, 1 [α ≥ τ ] =
0,1 [β ≥ τ ] = 1. This is a contradiction.

Similarly, suppose (b) does not hold, i.e., x(b, α,a-j) = 1 and x(b, β,a-j) = 0. By Lemma 4.3 (c),

r(b, β,a-j)− r(b, α,a-j) = −α+

∫ α

z=β

x(b, z,a-j)dz.

On the other hand, note that as x(b, α,a-j) = 1 and x(b, β,a-j) = 0, by Lemma 4.3 (a), x(⃗0, 1⃗) = 0 and x(⃗1, 0⃗) = 1, so
x(b, β,a-j) = x(⃗0, 1⃗) and x(b, α,a-j) = x(⃗1, 0⃗). By Corollary 4.1 (c), r(b, β,a-j) − r(b, α,a-j) = r(⃗0, 1⃗) − r(⃗1, 0⃗) = −τ .
Together with the above equation, we know ∫ β

z=α

x(b, z,a-j)dz = τ − α.

By Lemma 4.3 (a), (d) and x ∈ {0, 1}, we can conclude that x(b, aj ,a-j) = 1 [aj ≤ τ ] (aj ∈ [α, β]). Thus, 1 [α ≤ τ ] =
1,1 [β ≤ τ ] = 0. This is a contradiction.

A.6 Proof of Theorem 4.1
Proof of Theorem 4.1: The necessity (⇒) is implied by Lemma 4.5.

Therefore, it suffices to prove the sufficiency ( ⇐= ). For each a ∈ [0, 1]n, find τa as stated in condition (a), and let
p(b,a) = τa ·x(b,a). And for each b ∈ [0, 1]n, find θb as stated in condition (b), and let r(b,a) = θb ·x(b,a). We will verify
that (x, p, r) is an IC mechanism.

For buyer i and any b-i ∈ [0, 1]n−1,a ∈ [0, 1]n, recall that
ui(bi,b-i,a) = vi · x(bi,b-i,a)− p(bi,b-i,a) = (vi − τa) · x(bi,b-i,a).

For fixed b-i and a, x(bi,b-i,a) is a monotone Boolean function of 1 [bi ≥ τa]. Verify that bi = vi maximizes the utility
when x(bi,b-i,a) as a function of bi is (i) 0 (ii) 1 and (iii) 1 [bi ≥ τa].

For seller j and any a-j ∈ [0, 1]n−1,b ∈ [0, 1]n, recall that
uj(b, aj ,a-j) = r(b, aj ,a-j)− cj · x(b, aj ,a-j) = (θb − cj) · x(b, aj ,a).

For fixed a-j and b, x(b, aj ,a-j) is a monotone Boolean function of 1 [aj ≤ θb]. Verify that aj = cj maximizes the utility
when x(b, aj ,a-j) as a function of aj is (i) 0 (ii) 1 and (iii) 1 [aj ≤ θb].

This shows that (x, p, r) is an IC mechanism, and the sufficiency of Theorem 4.1 holds.



A.7 Proof of Theorem 4.2
Proof of Theorem 4.2: The necessity (⇒) is implied by Lemma 4.6.

Therefore, it suffices to prove the sufficiency ( ⇐= ). Let p(b,a) = r(b,a) = τx(b,a). Clearly the mechanism is SBB. We
will verify that (x, p, r) is an IC mechanism.

For buyer i and any b-i ∈ [0, 1]n−1,a ∈ [0, 1]n, recall that
ui(bi,b-i,a) = vi · x(bi,b-i,a)− p(bi,b-i,a) = (vi − τ) · x(bi,b-i,a).

For fixed b-i and a, x(bi,b-i,a) is a monotone Boolean function of 1 [bi ≥ τ ]. Verify that bi = vi maximizes the utility when
x(bi,b-i,a) as a function of bi is (i) 0 (ii) 1 and (iii) 1 [bi ≥ τ ].

For seller j and any a-j ∈ [0, 1]n−1,b ∈ [0, 1]n, recall that
uj(b, aj ,a-j) = r(b, aj ,a-j)− cj · x(b, aj ,a-j) = (τ − cj) · x(b, aj ,a).

For fixed a-j and b, x(b, aj ,a-j) is a monotone Boolean function of 1 [aj ≤ τ ]. Verify that aj = cj maximizes the utility
when x(b, aj ,a-j) as a function of aj is (i) 0 (ii) 1 and (iii) 1 [aj ≤ τ ].

This shows that (x, p, r) is an IC mechanism, and the sufficiency of Theorem 4.2 holds.

A.8 Proof of Theorem 4.3
Proof of Theorem 4.3: Let µv = Ev∼F [v], µc = Ec∼G[c]. Recall that for buyer i and seller j,

ui(b,a) = x(b,a) · vi − p(b,a) = vi − 0.5(µv + µc),

uj(b,a) = r(b,a)− x(b,a) · cj = 0.5(µv + µc)− cj .

The participants’ utilities do not depend on their actions, so the mechanism is IC. And as p(b,a) = r(b,a) always holds,
we can see that the mechanism is SBB. For IR, compute that

n∑
i=1

ui(v, c) =

n∑
i=1

vi − 0.5n(µv + µc),

n∑
j=1

uj(v, c) = 0.5n(µv + µc)−
n∑

j=1

cj .

Let δ = 0.5(µv − µc) > 0. Using Chernoff bounds, we can see that

Pr

[
n∑

i=1

ui(v, c) ≤ 0

]
≤ Prv∼Fn

[
n∑

i=1

vi ≤ n(µv − δ)

]
≤ e−

nδ2

3µv , (1)

Pr

 n∑
j=1

uj(v, c) ≤ 0

 ≤ Prc∼Gn

 n∑
j=1

cj ≥ n(µc + δ)

 ≤ e−
nδ2

3µc . (2)

Note that F and G are supported on [0, 1], so µv > µc ≥ 0. According to (1), Pr[
∑n

i=1 ui(v, c) ≤ 0] = 1 − e−Ω(n), which
means IR is satisfied for the buyers with probability 1−e−Ω(n). If µc > 0, then using (2), Pr[

∑n
j=1 uj(v, c) ≤ 0] = 1−e−Ω(n).

Otherwise, µc = 0, then Prc∼G[c = 0] = 1, and Pr[
∑n

j=1 uj(v, c) ≤ 0] = 0, which shows that the sellers are IR with
probability 1− e−Ω(n).

Finally, for efficiency, compute that

FB = Ev∼Fn,c∼Gn

∑
i

vi −
∑
j

cj

 · 1

∑
i

vi ≥
∑
j

cj


≤ Ev∼Fn,c∼Gn

∑
i

vi −
∑
j

cj

+ n · 1

∑
i

vi <
∑
j

cj


≤ n

µv − µc +Prv∼Fn

[∑
i

vi ≤ n(µv − δ)

]
+Prc∼Gn

∑
j

cj ≥ n(µc + δ)


≤ n

[
µv − µc + e−

nδ2

3µv + e−
nδ2

3µc

]
(3)

Here, the final inequality uses Chernoff bounds. And ALG = Ev∼Fn,c∼Gn [(
∑

i vi−
∑

j cj) ·1] = n(µv−µc). If µc = 0, then
Prc∼G[c = 0] = 1, and ALG = FB = n(µv−µc) must hold. Otherwise, according to (3), we can see that ALG

FB = 1−e−Ω(n).
This concludes the proof.



A.9 Proof of Theorem 4.4
Proof of Theorem 4.4: We will prove this theorem by showing that under the characterization of IC mechanisms in Theo-
rem 4.1, no IC mechanisms can be efficient in the case where F is a uniform distribution on [0, 1] and G is always 1

2 . Note that
Ev∼F [v] = Ec∼G[c] =

1
2 in this case.

We first compute that FB = Ev∼U [0,1]n [(
∑

i vi−
1
2n)·1

[∑
i vi ≥

1
2n
]
]. Let µn = 1

n

∑
i vi, then FB = n·Ev∼U [0,1]n [(µn−

1
2 ) · 1

[
µn ≥ 1

2

]
]. Note that for i ∈ [n], vi are i.i.d. random variables with mean µ = 1

2 and variance σ2 = 1
12 . Using the central

limit theorem,
√
n(µn − 1

2 ) converges in distribution to a normal distribution N (0, 1
12 ). Thus,

FB = (1 + o(1))
√
n ·Ex∼N (0, 1

12 )

[
x · 1

[
x ≥ 0

]]
= (1 + o(1))

√
n

24π
. (4)

On the other hand, consider an IC mechanism (x, p, r). As c is constant and the mechanism is IC, a is also constant,
and thus x only depends on b. Then according to Theorem 4.1, there exist τ ∈ [0, 1] and a monotone Boolean function
f : {0, 1}n → {0, 1}, such that x(b) = f(1 [b1 ≥ τ ] , · · · ,1 [bn ≥ τ ]). Therefore,

ALG = Ev∼U [0,1]n

[(∑
i

vi −
1

2
n

)
· f
(
1
[
v1 ≥ τ

]
, · · · ,1

[
vn ≥ τ

])]
.

Let ei = 1 [vi ≥ τ ] and s =
∑n

i=1 ei. Compute that E[(
∑

i vi −
1
2n) | e] =

1
2 (s− (1− τ)n). Therefore, to maximize ALG,

f(e) = 1 [s ≥ (1− τ)n]. Let m = (1− τ)n,2 we can compute that

ALG ≤
n∑

i=m

Pr [s = i] · 1
2
(i− (1− τ)n)

=

n∑
i=m

τn−i(1− τ)i
(
n

i

)
· 1
2
(i− (1− τ)n)

=
n

2

n∑
i=m

(
τn−i(1− τ)i

(
n− 1

i− 1

)
− τn−i(1− τ)i+1

(
n

i

))
=

n

2
· τn−m+1(1− τ)m

(
n− 1

m− 1

)
(5)

=
n

2
· τn−m+1(1− τ)m+1

(
n

m

)
(6)

Here, (5) depends on the fact that
(
n
i

)
=
(
n−1
i−1

)
+
(
n−1
i

)
and (6) is because m = (1− τ)n.

Applying Stirling’s approximation to (6), we see that

ALG ≤ (1 + o(1))

√
n

8π
τ(1− τ) ≤ (1 + o(1))

√
n

32π
. (7)

Combining (4) and (7), we can see that ALG
FB ≤

√
3
2 + o(1), which concludes the proof.

B Missing Proofs in Section 5
B.1 Proof of Lemma 5.1
Proof of Lemma 5.1: (i) ⇒ (ii): Directly compute that ∂f

∂xi
(x) = f ′

i(xi) and ∂2f
∂xi∂xj

(x) = 0.

(ii) ⇒ (i): Using (ii), we can first see that for any i, j ∈ [n], i ̸= j, ∂f
∂xi

(xj ,x−j) = ∂f
∂xi

(x′
j ,x−j). Applying this multiple

times, we further know that for any i ∈ [n], ∂f
∂xi

(xi,x−i) = ∂f
∂xi

(xi,x
′
−i). Then, for each i ∈ [n], take an arbitrary x′

−i,
let fi(xi) =

∫ xi

i=0
∂f
∂xi

(xi,x−i) and let g(x) = f (⃗0) +
∑n

i=1 fi(xi). We can see that g(⃗0) = f (⃗0) and for each i ∈ [n],
∂g
∂xi

(x) = ∂f
∂xi

(x). This shows that f(x) = g(x) = f (⃗0) +
∑n

i=1 fi(xi), which concludes the proof.

2For simplicity of presentation, assume τn is an integer to avoid rounding issues.



B.2 Proof of Lemma 5.2
Proof of Lemma 5.2: For (a), according to Lemma 4.3 (b),

p(βi,b-i,a)− p(α,b-i,a) = βi · x(βi,b-i,a)− αi · x(αi,b-i,a)−
∫ βi

z=αi

x(z,b-i,a)dz. (8)

Plugg (8) into the following identical equation:

[p(βi1, βi2,b-i1,i2,a)− p(βi1, αi2,b-i1,i2,a)] + [p(βi1, αi2,b-i1,i2,a)− p(αi1, αi2,b-i1,i2,a)]

= [p(βi1, βi2,b-i1,i2,a)− p(αi1, βi2,b-i1,i2,a)] + [p(αi1, βi2,b-i1,i2,a)− p(αi1, αi2,b-i1,i2,a)].

We will get (9). We omit b-i1,i2,a in (9) for readability.

βi2 · x(βi1, βi2)− αi2 · x(βi1, αi2)−
∫ βi2

αi2

x(βi1, z)dz

+ βi1 · x(βi1, αi2)− αi1 · x(αi1, αi2)−
∫ βi1

αi1

x(z, αi2)dz

= βi1 · x(βi1, βi2)− αi1 · x(αi1, βi2)−
∫ βi1

αi1

x(z, βi2)dz

+ βi2 · x(αi1, βi2)− αi2 · x(αi1, αi2)−
∫ βi2

αi2

x(αi1, z)dz. (9)

In (9), take the derivative of βi1, and then take the derivative of βi2. We know that

βi2 ·
∂2x

∂bi1∂bi2
(βi1, βi2,b-i1,i2,a) = βi1 ·

∂2x

∂bi1∂bi2
(βi1, βi2,b-i1,i2,a).

This shows that when β1 ̸= β2, ∂2x
∂bi1∂bi2

(βi1, βi2,b-i1,i2,a) = 0. Using the continuity of ∂2x
∂bi1∂bi2

, we further know that
∂2x

∂bi1∂bi2
(b,a) = 0, i.e., (a) holds.

For (b), according to Lemma 4.3 (c),

r(b, βj ,a-j)− r(b, αj ,a-j) = βj · x(b, βj ,a-j)− αj · x(b, αj ,a-j) +

∫ αj

z=βj

x(b, z,a-j)dz. (10)

With an argument similar to (a), we can prove (b) also holds.

B.3 Proof of Theorem 5.1
Proof of Theorem 5.1: The necessity (⇒) is implied by Lemmas 5.1 and 5.2, Lemma 4.3 (a).

Therefore, it suffices to prove the sufficiency ( ⇐= ). For each a ∈ [0, 1]n, find functions fa,i as stated in condition (a),
and let p(b,a) =

∑n
i=1(bi · fa,i(bi) −

∫ bi
z=0

fa,i(z)dz). And for each b ∈ [0, 1]n, find gb,j as stated in condition (b), and let
r(b,a) =

∑n
j=1(aj · gb,j(aj) +

∫ 1

z=aj
gb,j(z)dz).

We will verify that (x, p, r) is an IC mechanism.
For buyer i, fix b-i ∈ [0, 1]n−1,a ∈ [0, 1]n, recall that

ui(bi) = vi · x(bi)− p(bi) = vi

n∑
i=1

fa,i(bi)−
n∑

i=1

(
bi · fa,i(bi)−

∫ bi

z=0

fa,i(z)dz

)
.

Then u′
i(bi) = (vi − bi)f

′
a,i(bi). As f ′

a,i ≥ 0, bidding bi = vi maximizes buyer i’s utility.
For seller j, fix b ∈ [0, 1]n,a-j ∈ [0, 1]n−1, recall that

uj(aj) = r(aj)− cj · x(cj) =
n∑

j=1

(
aj · gb,j(aj)−

∫ 1

z=aj

gb,j(z)dz

)
− cj

n∑
j=1

gb,j(cj).

Then u′
j(aj) = (aj − cj)g

′
b,j(aj). As g′b,j ≤ 0, asking aj = cj maximizes seller j’s utility.

This concludes the proof of Theorem 5.1.



B.4 Proof of Theorem 5.2
Proof of Theorem 5.2: We will prove this theorem by showing that under the characterization of twice continuously differen-
tiable randomized IC mechanisms in Theorem 5.1, no twice continuously differentiable randomized IC mechanisms can be a
constant approximation of FB on the case where F is a uniform distribution on [0, 1] and G is always 1

2 .
In the proof of Theorem 4.4, we have already shown in (4) that

FB = (1 + o(1))

√
n

24π
.

Consider an IC mechanism (x, p, r). As c is constant and the mechanism is IC, a is also constant, and thus x only depends
on b. Then according to Theorem 5.1, there are non-decreasing differentiable functions fi : [0, 1] → R,∀i ∈ [n] such that
x(b,a) = f1(b1) + f2(b2) + · · ·+ fn(bn). Thus,

ALG = Ev∼U [0,1]n

[∑
i1

(
vi1 −

1

2

)
·
∑
i2

fi2(vi2)

]
.

Note that for i1 ̸= i2, Ev∼U [0,1]n [(vi1 − 1
2 ) · fi2(vi2)] = 0; we further know that

ALG = Ev∼U [0,1]n

[∑
i

(
vi −

1

2

)
· fi(vi)

]
=
∑
i

Evi∼U [0,1]

[(
vi −

1

2

)
· fi(vi)

]
≤
∑
i

Evi∼U [0,1]

[(
vi −

1

2

)
·
(
fi(1) · 1

[
vi ≥

1

2

]
+ fi(0) · 1

[
vi <

1

2

])]
=
∑
i

(
fi(1) ·

1

8
− fi(0) ·

1

8

)
=

1

8

(
x(⃗1)− x(⃗0)

)
≤ 1

8
.

This means that ALG
FB ≤ (1 + o(1))

√
3π
8n , i.e., ALG is not a constant approximation of FB.


