

Non-excludable Bilateral Trade between Groups

Yixuan (Even) Xu **Tsinghua University** Hanrui Zhang Simons Laufer Mathematical Sciences Institute

Vincent Conitzer Carnegie Mellon University

Bilateral Trade

Buyer Private **value**: $v \sim F$

Seller Private **cost**: $c \sim G$

Public information: *F*, *G*

Mechanism Design

- Based on **interactions** with the players, a mechanism decides:
 - Whether they should **trade** *x*
 - The **payment** of the buyer *p*
 - The **receipt** of the seller r
- Key difficulty: **truthfulness**
- **Revelation principle**: WLOG, **interactions** can be viewed as a sealed **bid** *b* from the buyer and a sealed **ask** *a* from the seller.

Mechanism Design

- Based on the players' **bid** *b* and **ask** *a*, a mechanism decides:
 - Whether they should **trade** *x*(*a*, *b*)
 - The **payment** of the buyer *p(a, b)*
 - The **receipt** of the seller *r*(*a*, *b*)
- Utilities of the players:
 - Buyer: $u_b(a, b) = v \cdot x(a, b) p(a, b)$
 - Seller: $u_s(a, b) = r(a, b) c \cdot x(a, b)$

(Obtained value - payment) (Receipt - production cost)

Desiderata

- Incentive compatible (IC): players bid/ask truthfully
- Individually rational (IR): players' utilities are non-negative
- **Budget balanced (BB):** buyer's payment ≥ seller's receipt
- **Efficient:** a trade happens whenever v > c

Myerson and Satterthwaite

- A seminal impossibility by Myerson and Satterthwaite (1983):
- It is impossible to achieve all of {IC, IR, BB, Efficient} in bilateral trade, i.e, *efficient bilateral trade cannot be implemented in a feasible way*.

Bypassing Myerson and Satterthwaite

Bilateral Trade Between Groups

Non-Excludability

- Non-Excludability: the mechanism guarantees
 - The **players share** the same **allocation**
 - The **buyers share** the same **payment**
 - The **sellers share** the same **receipt**
- Based on the players' **bids** *b* and **asks** *a*, a mechanism decides:
 - Whether **all** the players should **trade** *x*(*a*, *b*)
 - The **payment shared** by the buyers *p*(*a*, *b*)
 - The **receipt shared** by the sellers *r*(*a*, *b*)

The Whole Picture

Desiderata

- Incentive compatible (IC): players bid/ask truthfully
- Individually rational (IR): players' utilities are non-negative
- **Budget balanced (BB):** buyer's payment ≥ seller's receipt
- **Efficient:** a trade happens whenever v > c

Desiderata

- Incentive compatible (IC): players bid/ask truthfully
- Individually rational (IR): groups' utilities are non-negative
- **Budget balanced (BB):** buyer's payment ≥ seller's receipt
- Efficient (in the limit): as $n \to \infty$, GFT/FB $\to 1$

Our Results in a Nutshell

- A **dichotomy** in the possibility of trading efficiently.
- In expectation:
 - If the buyers value the item (strictly) more than the sellers:
 - A mechanism achieving all desiderata in the limit is given
 - If the sellers value the item (weakly) more than the buyers:
 - No mechanisms can achieve all desiderata in the limit

Why Two Cases?

• Consider the **first best (FB)** in both cases.

• Lemma 4.1.

- If $E_{v \sim F}[v] > E_{c \sim G}[c]$, then $FB = \Omega(n)$.
- If $E_{v \sim F}[v] \leq E_{c \sim G}[c]$, then $FB = O(\sqrt{n})$.
- Lemma 4.1 naturally divides the problem into two cases.
 - When the sellers value item more, even FB goes to zero (per agent).
 - It is only possible to gain much when **the buyers value item more**.

Deterministic Mechanisms

- **Deterministic Mechanisms:** allocation $x(b, a) \in \{0, 1\}$
- Our results for deterministic mechanisms:
 - A characterization of IC mechanisms (Theorem 4.1, 4.2)
 - A positive result when $E_{v \sim F}[v] > E_{c \sim G}[c]$ (Theorem 4.3)
 - A negative result when $E_{v \sim F}[v] \leq E_{c \sim G}[c]$ (Theorem 4.4)

Characterization of IC Mechanisms

- **Theorem 4.1.** Allocation x(b, a) can be implemented by an **IC** deterministic mechanism **if and only if:**
 - (a). For any a, there is τ_a and a monotone Boolean function f_a , such that $x(b, a) = f_a(\mathbf{1}[b_1 \ge \tau_a], \mathbf{1}[b_2 \ge \tau_a], ..., \mathbf{1}[b_n \ge \tau_a])$
 - (b). For any **b**, there is $\theta_{\mathbf{b}}$ and a monotone Boolean function $g_{\mathbf{b}}$, such that $x(\mathbf{b}, \mathbf{a}) = g_{\mathbf{b}}(\mathbf{1}[a_1 \le \theta_{\mathbf{b}}], \mathbf{1}[a_2 \le \theta_{\mathbf{b}}], ..., \mathbf{1}[a_n \le \theta_{\mathbf{b}}])$
- A mechanism should decide in a **voting-like** way.

Characterization of IC Mechanisms

- **Theorem 4.1.** Allocation x(b, a) can be implemented by an **IC** deterministic mechanism **if and only if:**
 - (a). For any a, there is τ_a and a monotone Boolean function f_a , such that $x(b, a) = f_a(\mathbf{1}[b_1 \ge \tau_a], \mathbf{1}[b_2 \ge \tau_a], ..., \mathbf{1}[b_n \ge \tau_a])$
 - (b). For any **b**, there is $\theta_{\mathbf{b}}$ and a monotone Boolean function $g_{\mathbf{b}}$, such that $x(\mathbf{b}, \mathbf{a}) = g_{\mathbf{b}}(\mathbf{1}[a_1 \le \theta_{\mathbf{b}}], \mathbf{1}[a_2 \le \theta_{\mathbf{b}}], ..., \mathbf{1}[a_n \le \theta_{\mathbf{b}}])$
- **Theorem 4.2.** Allocation *x*(*b*, *a*) can be implemented by an **IC** and **SBB** deterministic mechanism if and only if:
 - There is τ and a monotone Boolean function f, such that $x(\boldsymbol{b}, \boldsymbol{a}) = f(\mathbf{1}[b_1 \ge \tau], ..., \mathbf{1}[b_n \ge \tau], \mathbf{1}[a_1 \le \tau], ..., \mathbf{1}[a_n \le \tau])$

Buyers Value More: Positive Result

Algorithm 1:

• Always trade at price $\frac{1}{2}(E_{\nu \sim F}[\nu] + E_{c \sim G}[c])$

•
$$x(\boldsymbol{b}, \boldsymbol{a}) = 1, p(\boldsymbol{b}, \boldsymbol{a}) = r(\boldsymbol{b}, \boldsymbol{a}) = \frac{1}{2}(E_{\nu \sim F}[\nu] + E_{c \sim G}[c])$$

- **Theorem 4.3.** Algorithm 1 is **IC** and **SBB**. When $E_{v \sim F}[v] > E_{c \sim G}[c]$, w.p. $1 e^{-\Omega(n)}$, it is **IR**, and its **efficiency** is $1 e^{-\Omega(n)}$.
 - Informally, Algorithm 1 achieves all desiderata in the limit.

Sellers Value More: Negative Result

- **Theorem 4.4.** When $E_{v \sim F}[v] \leq E_{c \sim G}[c]$, no deterministic IC mechanisms can be efficient in the limit.
- Recall that in this case, $FB = O(\sqrt{n})$ (Lemma 4.1)
 - There is no much to lose in the first place
 - Additively, Algorithm 1's loss is still o(n)

Randomized Mechanisms

- **Randomized Mechanisms:** allocation $x(b, a) \in [0, 1]$
- We consider **smooth** randomized mechanisms
 - x(b, a) is twice continuously differentiable
- Our results for **smooth** randomized mechanisms:
 - A characterization of IC mechanisms (Theorem 5.1)
 - A **positive result** when $E_{v \sim F}[v] > E_{c \sim G}[c]$ (Same as deterministic)
 - A negative result when $E_{v \sim F}[v] \leq E_{c \sim G}[c]$ (Theorem 5.2)

Summary of Contributions

- We generalize bilateral trade to the multiplayer **setting**
 - This allows more positive results, bypassing Myerson & Satterthwaite
- We thoroughly study the new setting **theoretically**
 - We **characterize** the set of IC (truthful) mechanisms
 - We give an efficient mechanism when buyers value item more
 - We **show impossibility of efficiency** when sellers value item more
- We conduct **experiments** to show effect of our mechanism