Non-excludable Bilateral Trade between Groups

Yixuan (Even) Xu Tsinghua University

Hanrui Zhang Simons Laufer Mathematical Sciences Institute

Vincent Conitzer
Carnegie Mellon University

Bilateral Trade

Buyer
Private value: $v \sim F$

Seller
Private cost: $c \sim G$

Public information: F, G

Mechanism Design

- Based on interactions with the players, a mechanism decides:
- Whether they should trade x
- The payment of the buyer p
- The receipt of the seller r
- Key difficulty: truthfulness
- Revelation principle: WLOG, interactions can be viewed as a sealed bid b from the buyer and a sealed ask a from the seller.

Mechanism Design

- Based on the players' bidl b and ask a, a mechanism decides:
- Whether they should trade $x(a, b)$
- The payment of the buyer $p(a, b)$
- The receipt of the seller $r(a, b)$
- Utilities of the players:
- Buyer: $u_{b}(a, b)=v \cdot x(a, b)-p(a, b)$
- Seller: $u_{s}(a, b)=r(a, b)-c \cdot x(a, b)$
(Obtained value - payment)
(Receipt - production cost)

Desiderata

- Incentive compatible (IC): players bid/ask truthfully
- Individually rational (IR): players' utilities are non-negative
- Budget balanced (BB): buyer's payment \geq seller's receipt
- Efficient: a trade happens whenever $v>c$

Myerson and Satterthwaite

- A seminal impossibility by Myerson and Satterthwaite (1983):
- It is impossible to achieve all of $\{I C, I R, B B$, Efficient $\}$ in bilateral trade, i.e, efficient bilateral trade cannot be implemented in a feasible way.

Bypassing Myerson and Satterthwaite

Bilateral Trade Between Groups

Non-Excludability

- Non-Excludability: the mechanism guarantees
- The players share the same allocation
- The buyers share the same payment
- The sellers share the same receipt
- Based on the players' bidls b and asks a, a mechanism decides:
- Whether all the players should trade $x(\boldsymbol{a}, \boldsymbol{b})$
- The payment shared by the buyers $p(\boldsymbol{a}, \boldsymbol{b})$
- The receipt shared by the sellers $r(\boldsymbol{a}, \boldsymbol{b})$

The Whole Picture

Desiderata

- Incentive compatible (IC): players bid/ask truthfully
- Individually rational (IR): players' utilities are non-negative
- Budget balanced (BB): buyer's payment \geq seller's receipt
- Efficient: a trade happens whenever $v>c$

Desiderata

- Incentive compatible (IC): players bid/ask truthfully
- Individually rational (IR): groups' utilities are non-negative
- Budget balanced (BB): buyer's payment \geq seller's receipt
- Efficient (in the limit): as $n \rightarrow \infty, \mathrm{GFT} / \mathrm{FB} \rightarrow 1$

Our Results in a Nutshell

- A dichotomy in the possibility of trading efficiently.
- In expectation:
- If the buyers value the item (strictly) more than the sellers:
- A mechanism achieving all desiderata in the limit is given
- If the sellers value the item (weakly) more than the buyers:
- No mechanisms can achieve all desiderata in the limit

Why Two Cases?

- Consider the first best (FB) in both cases.
- Lemma 4.1.
- If $E_{v \sim F}[v]>E_{c \sim G}[c]$, then $\mathrm{FB}=\Omega(n)$.
- If $E_{v \sim F}[v] \leq E_{c \sim G}[c]$, then $\mathrm{FB}=O(\sqrt{n})$.
- Lemma 4.1 naturally divides the problem into two cases.
- When the sellers value item more, even FB goes to zero (per agent).
- It is only possible to gain much when the buyers value item more.

Deterministic Mechanisms

- Deterministic Mechanisms: allocation $x(\boldsymbol{b}, \boldsymbol{a}) \in\{0,1\}$
- Our results for deterministic mechanisms:
- A characterization of IC mechanisms (Theorem 4.1, 4.2)
- A positive result when $E_{v \sim F}[v]>E_{c \sim G}[c]$ (Theorem 4.3)
- A negative result when $E_{v \sim F}[v] \leq E_{c \sim G}[c]$ (Theorem 4.4)

Characterization of IC Mechanisms

- Theorem 4.1. Allocation $x(\boldsymbol{b}, \boldsymbol{a})$ can be implemented by an IC deterministic mechanism if and only if:
- (a). For any \boldsymbol{a}, there is $\tau_{\boldsymbol{a}}$ and a monotone Boolean function f_{a}, such that $x(\boldsymbol{b}, \boldsymbol{a})=f_{\boldsymbol{a}}\left(\mathbf{1}\left[b_{1} \geq \tau_{\boldsymbol{a}}\right], \mathbf{1}\left[b_{2} \geq \tau_{\boldsymbol{a}}\right], \ldots, \mathbf{1}\left[b_{n} \geq \tau_{\boldsymbol{a}}\right]\right)$
- (b). For any \boldsymbol{b}, there is θ_{b} and a monotone Boolean function g_{b}, such that $x(\boldsymbol{b}, \boldsymbol{a})=g_{\boldsymbol{b}}\left(\mathbf{1}\left[a_{1} \leq \theta_{\boldsymbol{b}}\right], \mathbf{1}\left[a_{2} \leq \theta_{\boldsymbol{b}}\right], \ldots, \mathbf{1}\left[a_{n} \leq \theta_{\boldsymbol{b}}\right]\right)$
- A mechanism should decide in a voting-like way.

Characterization of IC Mechanisms

- Theorem 4.1. Allocation $x(\boldsymbol{b}, \boldsymbol{a})$ can be implemented by an IC deterministic mechanism if and only if:
- (a). For any \boldsymbol{a}, there is $\tau_{\boldsymbol{a}}$ and a monotone Boolean function f_{a}, such that $x(\boldsymbol{b}, \boldsymbol{a})=f_{\boldsymbol{a}}\left(\mathbf{1}\left[b_{1} \geq \tau_{\boldsymbol{a}}\right], \mathbf{1}\left[b_{2} \geq \tau_{\boldsymbol{a}}\right], \ldots, \mathbf{1}\left[b_{n} \geq \tau_{\boldsymbol{a}}\right]\right)$
- (b). For any \boldsymbol{b}, there is θ_{b} and a monotone Boolean function g_{b}, such that $x(\boldsymbol{b}, \boldsymbol{a})=g_{\boldsymbol{b}}\left(\mathbf{1}\left[a_{1} \leq \theta_{\boldsymbol{b}}\right], \mathbf{1}\left[a_{2} \leq \theta_{\boldsymbol{b}}\right], \ldots, \mathbf{1}\left[a_{n} \leq \theta_{\boldsymbol{b}}\right]\right)$
- Theorem 4.2. Allocation $x(\boldsymbol{b}, \boldsymbol{a})$ can be implemented by an IC and SBB deterministic mechanism if and only if:
- There is τ and a monotone Boolean function f, such that $x(\boldsymbol{b}, \boldsymbol{a})=f\left(\mathbf{1}\left[b_{1} \geq \tau\right], \ldots, \mathbf{1}\left[b_{n} \geq \tau\right], \mathbf{1}\left[a_{1} \leq \tau\right], \ldots, \mathbf{1}\left[a_{n} \leq \tau\right]\right)$

Buyers Value More: Positive Result

- Algorithm 1:

- Always trade at price $\frac{1}{2}\left(E_{v \sim F}[v]+E_{c \sim G}[c]\right)$
- $x(\boldsymbol{b}, \boldsymbol{a})=1, p(\boldsymbol{b}, \boldsymbol{a})=r(\boldsymbol{b}, \boldsymbol{a})=\frac{1}{2}\left(E_{v \sim F}[v]+E_{c \sim G}[c]\right)$
- Theorem 4.3. Algorithm 1 is IC and SBB . When $E_{v \sim F}[v]>$ $E_{c \sim G}[c]$, w.p. $1-e^{-\Omega(n)}$, it is $\mathbb{I R}$, and its efficiency is $1-e^{-\Omega(n)}$.
- Informally, Algorithm 1 achieves all desiderata in the limit.

Sellers Value More: Negative Result

- Theorem 4.4. When $E_{v \sim F}[v] \leq E_{c \sim G}[c]$, no deterministic IC mechanisms can be efficient in the limit.
- Recall that in this case, $\mathrm{FB}=O(\sqrt{n})$ (Lemma 4.1)
- There is no much to lose in the first place
- Additively, Algorithm 1's loss is still o(n)

Randomized Mechanisms

- Randomized Mechanisms: allocation $x(\boldsymbol{b}, \boldsymbol{a}) \in[0,1]$
- We consider smooth randomized mechanisms
- $x(\boldsymbol{b}, \boldsymbol{a})$ is twice continuously differentiable
- Our results for smooth randomized mechanisms:
- A characterization of IC mechanisms (Theorem 5.1)
- A positive result when $E_{\nu \sim F}[v]>E_{c \sim G}[c]$ (Same as deterministic)
- A negative result when $E_{v \sim F}[v] \leq E_{c \sim G}[c]$ (Theorem 5.2)

Summary of Contributions

- We generalize bilateral trade to the multiplayer setting
- This allows more positive results, bypassing Myerson \& Satterthwaite
- We thoroughly study the new setting theoretically
- We characterize the set of IC (truthful) mechanisms
- We give an efficient mechanism when buyers value item more
- We show impossibility of efficiency when sellers value item more
- We conduct experiments to show effect of our mechanism

