Non-excludable Bilateral Trade between Groups

Bilateral Trade (Classic Setting)

Based on **interactions** with the players, a **mechanism** decides: Whether to **trade** *x*, **payment** of the buyer *p*, **receipt** of the seller *r*. **Revelation principle:** WLOG, **interactions** can be viewed as a sealed **bid** *b* from the buyer and a sealed **ask** *a* from the seller.

Our Results

A **dichotomy** in the possibility of trading efficiently. If the buyers value the item (strictly) more than the sellers: • A mechanism achieving all desiderata in the limit is given. If the sellers value the item (weakly) more than the buyers: • No mechanisms can achieve all desiderata in the limit. Both **deterministic** ($x(b, a) \in \{0, 1\}$), and **smooth randomized** ($x(b, a) \in [0, 1]$, twice continuously differentiable) mechanisms are studied.

Why Two Cases?

A mechanism: $\{x(a, b), p(a, b), r(a, b)\}$ Utilities: $u_b(a, b) = v \cdot x(a, b) - p(a, b), u_s(a, b) = r(a, b) - c \cdot x(a, b)$

Desiderata of a mechanism:

- Incentive compatible (IC): Players bid and ask truthfully
- Individually rational (IR): Players' utilities are non-negative
- **Budget balanced (BB):** Buyer's payment ≥ seller's receipt
- **Efficient:** A trade happens whenever v > c

Myerson and Satterthwaite (1983): It is impossible to achieve all of {IC, IR, BB, Efficient} in bilateral trade, i.e, *efficient bilateral trade cannot be implemented in a feasible way*.

Lemma 4.1. Consider the **first best (FB)** in both cases. a) If $E_{v \sim F}[v] > E_{c \sim G}[c]$, then FB = $\Omega(n)$. b) If $E_{v \sim F}[v] \le E_{c \sim G}[c]$, then FB = $O(\sqrt{n})$. Lemma 4.1 naturally divides the problem into two cases. When the sellers value item more, even FB goes to zero (per agent).

Characterization of IC Mechanisms

Theorem 4.1. Deterministic allocation x(b, a) can be implemented by an **IC** deterministic mechanism **if and only if:**

a) For any *a*, there is τ_a and a monotone Boolean function f_a, such that x(b, a) = f_a(1[b₁ ≥ τ_a], 1[b₂ ≥ τ_a], ..., 1[b_n ≥ τ_a])
b) For any *b*, there is θ_b and a monotone Boolean function g_b, such

that $x(b, a) = g_b(\mathbf{1}[a_1 \le \theta_b], \mathbf{1}[a_2 \le \theta_b], ..., \mathbf{1}[a_n \le \theta_b])$ **Informally:** An IC mechanism should decide in a **voting-like** way.

Theorem 5.1. Smooth randomized allocation *x*(*b*, *a*) can be implemented by an **IC** randomized mechanism **if and only if:**

Group Trading: We consider a richer paradigm, with many buyers and sellers on both sides of a trade, hoping to bypass the impossibility.

Non-Excludability: the mechanism guarantees

- The **players share** the same **allocation** *x*
- The **buyers share** the same **payment** *p*
- The **sellers share** the same **receipt** *r*

Desiderata of a mechanism:

- Incentive compatible (IC): Players bid and ask truthfully
- Individually rational (IR): Groups' utilities are non-negative
- **Budget balanced (BB):** Buyer's payment ≥ seller's receipt
- Efficient (in the limit): As $n \to \infty$, GFT/FB $\to 1$

Asymptotics: Real life intuition shows that although negotiation between individuals are inefficient, that of two sizeable organizations is usually better. Thus, we treat *n* as the only asymptotic variable, and let

a) For any *a*, there are *n* non-decreasing differentiable functions f_{a,i}, such that x(b, a) = f_{a,1}(b₁) + f_{a,2}(b₂) + ... + f_{a,n}(b_n)
b) For any *b*, there are *n* non-increasing differentiable functions g_{b,i}, such that x(b, a) = g_{b,1}(a₁) + g_{b,2}(a₂) + ... + g_{b,n}(a_n)
Informally: An IC mechanism must be separable across agents.

Buyers Value More: Positive Result

Algorithm 1: Always trade at price $\frac{1}{2}(E_{v\sim F}[v] + E_{c\sim G}[c])$. **Theorem 4.3.** Algorithm 1 is **IC** and **SBB**. When $E_{v\sim F}[v] > E_{c\sim G}[c]$, w.p. $1 - e^{-\Omega(n)}$, it is **IR**, and its **efficiency** is $1 - e^{-\Omega(n)}$. **Informally:** Algorithm 1 achieves all desiderata in the limit (in this case).

Sellers Value More: Negative Result

Theorem 4.4. When $E_{v \sim F}[v] \leq E_{c \sim G}[c]$, **no deterministic IC** mechanisms can be **efficient** in the limit.

Theorem 5.2. When $E_{v \sim F}[v] \leq E_{c \sim G}[c]$, no smooth randomized IC

